forked from docs/modelarts
![otcbot[bot]](/assets/img/avatar_default.png)
Changes to ma_umn from doc-exports#1 This is an automatically created Pull Request for changes to ma_umn in opentelekomcloud-docs/doc-exports#1. Please do not edit it manually, since update to the original PR will overwrite local changes. Original patch file, as well as complete rst archive, can be found in the artifacts of the opentelekomcloud-docs/doc-exports#1 Reviewed-by: kucerakk <kucerakk@gmail.com>
7.1 KiB
7.1 KiB
- original_name
modelarts_23_0335.html
Using ModelArts SDKs
In notebook instances, you can use ModelArts SDKs to manage OBS, training jobs, models, and real-time services.
For details about how to use ModelArts SDKs, see ModelArts SDK Reference.
Notebooks carry the authentication (AK/SK) and region information about login users. Therefore, SDK session authentication can be completed without entering parameters.
Example Code
Creating a training job
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
from modelarts.session import Session from modelarts.estimator import Estimator session = Session() estimator = Estimator( modelarts_session=session, framework_type='PyTorch', # AI engine name framework_version='PyTorch-1.0.0-python3.6', # AI engine version code_dir='/obs-bucket-name/src/', # Training script directory boot_file='/obs-bucket-name/src/pytorch_sentiment.py', # Training startup script directory log_url='/obs-bucket-name/log/', # Training log directory hyperparameters=[ {"label":"classes", "value": "10"}, {"label":"lr", "value": "0.001"} ], output_path='/obs-bucket-name/output/', # Training output directory train_instance_type='modelarts.vm.gpu.p100', # Training environment specifications train_instance_count=1, # Number of training nodes job_description='pytorch-sentiment with ModelArts SDK') # Training job description job_instance = estimator.fit(inputs='/obs-bucket-name/data/train/', wait=False, job_name='my_training_job')
Querying a model list
1 2 3 4
from modelarts.session import Session from modelarts.model import Model session = Session() model_list_resp = Model.get_model_list(session, model_status="published", model_name="digit", order="desc")
Querying service details
1 2 3 4 5
from modelarts.session import Session from modelarts.model import Predictor session = Session() predictor_instance = Predictor(session, service_id="input your service_id") predictor_info_resp = predictor_instance.get_service_info()