:original_name: modelarts_23_0335.html
.. _modelarts_23_0335:
Using ModelArts SDKs
====================
In notebook instances, you can use ModelArts SDKs to manage OBS, training jobs, models, and real-time services.
For details about how to use ModelArts SDKs, see *ModelArts SDK Reference*.
Notebooks carry the authentication (AK/SK) and region information about login users. Therefore, SDK session authentication can be completed without entering parameters.
Example Code
------------
- Creating a training job
+-----------------------------------+-------------------------------------------------------------------------------------------------------------------------------------+
| :: | :: |
| | |
| 1 | from modelarts.session import Session |
| 2 | from modelarts.estimator import Estimator |
| 3 | session = Session() |
| 4 | estimator = Estimator( |
| 5 | modelarts_session=session, |
| 6 | framework_type='PyTorch', # AI engine name |
| 7 | framework_version='PyTorch-1.0.0-python3.6', # AI engine version |
| 8 | code_dir='/obs-bucket-name/src/', # Training script directory |
| 9 | boot_file='/obs-bucket-name/src/pytorch_sentiment.py', # Training startup script directory |
| 10 | log_url='/obs-bucket-name/log/', # Training log directory |
| 11 | hyperparameters=[ |
| 12 | {"label":"classes", |
| 13 | "value": "10"}, |
| 14 | {"label":"lr", |
| 15 | "value": "0.001"} |
| 16 | ], |
| 17 | output_path='/obs-bucket-name/output/', # Training output directory |
| 18 | train_instance_type='modelarts.vm.gpu.p100', # Training environment specifications |
| 19 | train_instance_count=1, # Number of training nodes |
| 20 | job_description='pytorch-sentiment with ModelArts SDK') # Training job description |
| 21 | job_instance = estimator.fit(inputs='/obs-bucket-name/data/train/', wait=False, job_name='my_training_job') |
+-----------------------------------+-------------------------------------------------------------------------------------------------------------------------------------+
- Querying a model list
+-----------------------------------+----------------------------------------------------------------------------------------------------------------+
| :: | :: |
| | |
| 1 | from modelarts.session import Session |
| 2 | from modelarts.model import Model |
| 3 | session = Session() |
| 4 | model_list_resp = Model.get_model_list(session, model_status="published", model_name="digit", order="desc") |
+-----------------------------------+----------------------------------------------------------------------------------------------------------------+
- Querying service details
+-----------------------------------+--------------------------------------------------------------------------------+
| :: | :: |
| | |
| 1 | from modelarts.session import Session |
| 2 | from modelarts.model import Predictor |
| 3 | session = Session() |
| 4 | predictor_instance = Predictor(session, service_id="input your service_id") |
| 5 | predictor_info_resp = predictor_instance.get_service_info() |
+-----------------------------------+--------------------------------------------------------------------------------+