:original_name: modelarts_23_0335.html .. _modelarts_23_0335: Using ModelArts SDKs ==================== In notebook instances, you can use ModelArts SDKs to manage OBS, training jobs, models, and real-time services. For details about how to use ModelArts SDKs, see *ModelArts SDK Reference*. Notebooks carry the authentication (AK/SK) and region information about login users. Therefore, SDK session authentication can be completed without entering parameters. Example Code ------------ - Creating a training job +-----------------------------------+-------------------------------------------------------------------------------------------------------------------------------------+ | :: | :: | | | | | 1 | from modelarts.session import Session | | 2 | from modelarts.estimator import Estimator | | 3 | session = Session() | | 4 | estimator = Estimator( | | 5 | modelarts_session=session, | | 6 | framework_type='PyTorch', # AI engine name | | 7 | framework_version='PyTorch-1.0.0-python3.6', # AI engine version | | 8 | code_dir='/obs-bucket-name/src/', # Training script directory | | 9 | boot_file='/obs-bucket-name/src/pytorch_sentiment.py', # Training startup script directory | | 10 | log_url='/obs-bucket-name/log/', # Training log directory | | 11 | hyperparameters=[ | | 12 | {"label":"classes", | | 13 | "value": "10"}, | | 14 | {"label":"lr", | | 15 | "value": "0.001"} | | 16 | ], | | 17 | output_path='/obs-bucket-name/output/', # Training output directory | | 18 | train_instance_type='modelarts.vm.gpu.p100', # Training environment specifications | | 19 | train_instance_count=1, # Number of training nodes | | 20 | job_description='pytorch-sentiment with ModelArts SDK') # Training job description | | 21 | job_instance = estimator.fit(inputs='/obs-bucket-name/data/train/', wait=False, job_name='my_training_job') | +-----------------------------------+-------------------------------------------------------------------------------------------------------------------------------------+ - Querying a model list +-----------------------------------+----------------------------------------------------------------------------------------------------------------+ | :: | :: | | | | | 1 | from modelarts.session import Session | | 2 | from modelarts.model import Model | | 3 | session = Session() | | 4 | model_list_resp = Model.get_model_list(session, model_status="published", model_name="digit", order="desc") | +-----------------------------------+----------------------------------------------------------------------------------------------------------------+ - Querying service details +-----------------------------------+--------------------------------------------------------------------------------+ | :: | :: | | | | | 1 | from modelarts.session import Session | | 2 | from modelarts.model import Predictor | | 3 | session = Session() | | 4 | predictor_instance = Predictor(session, service_id="input your service_id") | | 5 | predictor_info_resp = predictor_instance.get_service_info() | +-----------------------------------+--------------------------------------------------------------------------------+