Reviewed-by: Pruthi, Vineet <vineet.pruthi@t-systems.com> Co-authored-by: Wuwan, Qi <wuwanqi1@noreply.gitea.eco.tsi-dev.otc-service.com> Co-committed-by: Wuwan, Qi <wuwanqi1@noreply.gitea.eco.tsi-dev.otc-service.com>
49 KiB
Querying the Details About a Training Job Configuration
Function
This API is used to obtain the details about a specified training job configuration.
URI
GET /v1/{project_id}/training-job-configs/{config_name}
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
project_id |
Yes |
String |
Project ID. For details about how to obtain a project ID, see Obtaining a Project ID and Name. |
config_name |
Yes |
String |
Name of a training job configuration |
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
config_type |
No |
String |
Configuration type to be queried. Options:
|
Request Body
None
Response Body
Parameter |
Type |
Description |
---|---|---|
is_success |
Boolean |
Whether the request is successful |
error_message |
String |
Error message of a failed API call. This parameter is not included when the API call succeeds. |
error_code |
String |
Error code of a failed API call. For details, see Error Codes. This parameter is not included when the API call succeeds. |
config_name |
String |
Name of a training job configuration |
config_desc |
String |
Description of a training job configuration |
worker_server_num |
Integer |
Number of workers in a training job |
app_url |
String |
Code directory of a training job |
boot_file_url |
String |
Boot file of a training job |
model_id |
Long |
Model ID of a training job |
parameter |
JSON Array |
Running parameters of a training job. It is a collection of label-value pairs. This parameter is a container environment variable when a training job uses a custom image. For details, see Table 8. |
spec_id |
Long |
ID of the resource specifications selected for a training job |
data_url |
String |
Dataset of a training job |
dataset_id |
String |
Dataset ID of a training job |
dataset_version_id |
String |
Dataset version ID of a training job |
data_source |
JSON Array |
Dataset of a training job For details, see Table 4. |
engine_type |
Integer |
Engine type of a training job |
engine_name |
String |
Name of the engine selected for a training job |
engine_id |
Long |
ID of the engine selected for a training job |
engine_version |
String |
Version of the engine selected for a training job |
train_url |
String |
OBS URL of the output file of a training job. By default, this parameter is left blank. Example value: /usr/train/ |
log_url |
String |
OBS URL of the logs of a training job. By default, this parameter is left blank. Example value: /usr/train/ |
user_image_url |
String |
SWR URL of a custom image used by a training job |
user_command |
String |
Boot command used to start the container of a custom image of a training job |
spec_code |
String |
Resource specifications selected for a training job |
gpu_type |
String |
GPU type of the resource specifications |
create_time |
Long |
Time when a training job parameter configuration is created |
cpu |
String |
CPU memory of the resource specifications |
gpu_num |
Integer |
Number of GPUs of the resource specifications |
core |
String |
Number of cores of the resource specifications |
dataset_name |
String |
Dataset of a training job |
dataset_version_name |
String |
Dataset of a training job |
pool_id |
String |
ID of a resource pool |
pool_name |
String |
Name of a resource pool |
volumes |
JSON Array |
Storage volume that can be used by a training job. For details, see Table 5. |
nas_mount_path |
String |
Local mount path of SFS Turbo (NAS). Example value: /home/work/nas |
nas_share_addr |
String |
Shared path of SFS Turbo (NAS). Example value: 192.168.8.150:/ |
nas_type |
String |
Only NFS is supported. Example value: nfs |
Parameter |
Type |
Description |
---|---|---|
dataset_id |
String |
Dataset ID of a training job |
dataset_version |
String |
Dataset version ID of a training job |
type |
String |
Dataset type. Options:
|
data_url |
String |
OBS bucket path |
Parameter |
Type |
Description |
---|---|---|
nfs |
Object |
Storage volume of the shared file system type. Only the training jobs running in a resource pool with the shared file system network connected support such storage volumes. For details, see Table 6. |
host_path |
Object |
Storage volume of the host file system type. Only training jobs running in a dedicated resource pool support such storage volumes. For details, see Table 7. |
Parameter |
Type |
Description |
---|---|---|
id |
String |
ID of an SFS Turbo file system |
src_path |
String |
Address of an SFS Turbo file system |
dest_path |
String |
Local path to a training job |
read_only |
Boolean |
Whether dest_path is read-only. The default value is false.
|
Parameter |
Type |
Description |
---|---|---|
src_path |
String |
Local path to a host |
dest_path |
String |
Local path to a training job |
read_only |
Boolean |
Whether dest_path is read-only. The default value is false.
|
Parameter |
Type |
Description |
---|---|---|
label |
String |
Parameter name |
value |
String |
Parameter value |
Sample Request
The following shows how to obtain the details about the job configuration named config123.
GET https://endpoint/v1/{project_id}/training-job-configs/config123
Sample Response
- Successful response
{ "spec_code": "xxx", "user_image_url": "100.125.5.235:20202/jobmng/custom-cpu-base:1.0", "user_command": "bash -x /home/work/run_train.sh python /home/work/user-job-dir/app/mnist/mnist_softmax.py --data_url /home/work/user-job-dir/app/mnist_data", "dataset_version_id": "2ff0d6ba-c480-45ae-be41-09a8369bfc90", "engine_name": "xxx", "is_success": true, "nas_mount_path": "/home/work/nas", "worker_server_num": 1, "nas_share_addr": "192.168.8.150:/", "train_url": "/test/minst/train_out/out1/", "nas_type": "nfs", "spec_id": 4, "parameter": [ { "label": "learning_rate", "value": 0.01 } ], "log_url": "/usr/log/", "config_name": "config123", "app_url": "/usr/app/", "create_time": 1559045426000, "dataset_id": "38277e62-9e59-48f4-8d89-c8cf41622c24", "volumes": [ { "nfs": { "id": "43b37236-9afa-4855-8174-32254b9562e7", "src_path": "192.168.8.150:/", "dest_path": "/home/work/nas", "read_only": false } }, { "host_path": { "src_path": "/root/work", "dest_path": "/home/mind", "read_only": false } } ], "cpu": "64", "model_id": 4, "boot_file_url": "/usr/app/boot.py", "dataset_name": "dataset-test", "pool_id": "pool9928813f", "config_desc": "This is a config desc test", "gpu_num": 1, "data_source": [ { "type": "obs", "data_url": "/test/minst/data/" } ], "pool_name": "p100", "dataset_version_name": "dataset-version-test", "core": "8", "engine_type": 1, "engine_id": 3, "engine_version": "TF-1.8.0-python2.7", "data_url": "/test/minst/data/" }
- Failed response
{ "is_success": false, "error_message": "Error string", "error_code": "ModelArts.0105" }
Status Code
For details about the status code, see Table 1.