forked from docs/doc-exports
Reviewed-by: Hasko, Vladimir <vladimir.hasko@t-systems.com> Co-authored-by: Lai, Weijian <laiweijian4@huawei.com> Co-committed-by: Lai, Weijian <laiweijian4@huawei.com>
73 lines
10 KiB
HTML
73 lines
10 KiB
HTML
<a name="EN-US_TOPIC_0000001943974209"></a><a name="EN-US_TOPIC_0000001943974209"></a>
|
|
|
|
<h1 class="topictitle1">Introduction to AI Application Management</h1>
|
|
<div id="body0000001164680240"><p id="EN-US_TOPIC_0000001943974209__p936414234164">AI development and optimization require frequent iterations and debugging. Modifications in datasets, training code, or parameters affect the quality of models. If the metadata of the development process cannot be centrally managed, the optimal model may fail to be reproduced. </p>
|
|
<p id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_p137510217145">ModelArts AI application management allows you to import meta models from training jobs, OBS, and container images. In this way, you can centrally manage all iterated and debugged AI applications.</p>
|
|
<div class="section" id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_section13451424102410"><h4 class="sectiontitle">Constraints</h4><ul id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_ul226794853118"><li id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_li43261048132419">In an ExeML project, after a model is deployed, the model is automatically uploaded to the AI application management list. However, AI applications generated by ExeML cannot be downloaded and can be used only for deployment and rollout.</li></ul>
|
|
</div>
|
|
<div class="section" id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_section179419351998"><h4 class="sectiontitle">Scenarios for Creating AI Applications</h4><ul id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_ul5266825121110"><li id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_li15266192531114"><a href="inference-modelarts-0006.html">Imported from a training job</a>: Create a training job in ModelArts and train a model. After obtaining a satisfactory model, use it to create an AI application and deploy the application as services.</li><li id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_li1528973984510"><a href="inference-modelarts-0008.html">Imported from OBS</a>: If you use a mainstream framework to develop and train a model locally, you can upload the model to an OBS bucket based on the model package specifications, import the model from OBS to ModelArts, and use the model to create an AI application for service deployment.</li><li id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_li207311845194517"><a href="inference-modelarts-0009.html">Imported from a container image</a>: If an AI engine is not supported by ModelArts, you can use it to build a model, import the model to ModelArts as a custom image, use the image to create an AI application, and deploy the AI application as services.</li></ul>
|
|
</div>
|
|
<div class="section" id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_section2035952520"><h4 class="sectiontitle">Functions of AI Application Management </h4>
|
|
<div class="tablenoborder"><table cellpadding="4" cellspacing="0" summary="" id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_table129381852171817" frame="border" border="1" rules="all"><caption><b>Table 1 </b>Functions of AI application management</caption><thead align="left"><tr id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_row20939185214183"><th align="left" class="cellrowborder" valign="top" width="25.05%" id="mcps1.3.5.2.2.3.1.1"><p id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_p39391452151818">Supported Function</p>
|
|
</th>
|
|
<th align="left" class="cellrowborder" valign="top" width="74.95%" id="mcps1.3.5.2.2.3.1.2"><p id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_p129391526182">Description</p>
|
|
</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody><tr id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_row9939155231811"><td class="cellrowborder" valign="top" width="25.05%" headers="mcps1.3.5.2.2.3.1.1 "><p id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_p16939105231816"><a href="inference-modelarts-0004.html">Creating an AI Application</a></p>
|
|
</td>
|
|
<td class="cellrowborder" valign="top" width="74.95%" headers="mcps1.3.5.2.2.3.1.2 "><p id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_p2093917527184">Import the trained models to ModelArts and create AI applications for centralized management. The following provides the operation guide for each method of importing models.</p>
|
|
<ul id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_ul10607643162012"><li id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_li360774362019"><a href="inference-modelarts-0006.html">Importing a Meta Model from a Training Job</a></li><li id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_li12216110124618"><a href="inference-modelarts-0009.html">Importing a Meta Model from a Container Image</a></li></ul>
|
|
</td>
|
|
</tr>
|
|
<tr id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_row360675116315"><td class="cellrowborder" valign="top" width="25.05%" headers="mcps1.3.5.2.2.3.1.1 "><p id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_p7606185183116"><a href="inference-modelarts-0005.html">Viewing Details About an AI Application</a></p>
|
|
</td>
|
|
<td class="cellrowborder" valign="top" width="74.95%" headers="mcps1.3.5.2.2.3.1.2 "><p id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_p060625118314">After an AI application is created, you can view its information on the details page.</p>
|
|
</td>
|
|
</tr>
|
|
<tr id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_row1993935214186"><td class="cellrowborder" valign="top" width="25.05%" headers="mcps1.3.5.2.2.3.1.1 "><p id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_p1993985291812"><a href="inference-modelarts-0013.html">Managing AI Applications</a></p>
|
|
</td>
|
|
<td class="cellrowborder" valign="top" width="74.95%" headers="mcps1.3.5.2.2.3.1.2 "><p id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_p593975217188">To facilitate traceback and model tuning, ModelArts provides the AI application version management function. You can manage AI applications by version.</p>
|
|
</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
</div>
|
|
</div>
|
|
<div class="section" id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_section04192617912"><a name="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_section04192617912"></a><a name="en-us_topic_0171858287_section04192617912"></a><h4 class="sectiontitle">Supported AI Engines for ModelArts Inference</h4><p id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_p1827917215152">If you import a model from a template or OBS to create an AI application, the following AI engines and versions are supported.</p>
|
|
<div class="note" id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_note14547181205614"><img src="public_sys-resources/note_3.0-en-us.png"><span class="notetitle"> </span><div class="notebody"><ul id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_ul137885241333"><li id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_li1678982414310">Runtime environments marked with <strong id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_b111571144161315">recommended</strong> are unified runtime images, which will be used as mainstream base inference images. </li><li id="EN-US_TOPIC_0000001943974209__li168859543817">Images of the old version will be discontinued. Use unified images.</li><li id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_li17896248310">The base images to be removed are no longer maintained.</li><li id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_li118742181413">Naming a unified runtime image: <<em id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_i13817172208">AI engine name and version</em>> - <<em id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_i1407141532017">Hardware and version</em>: CPU, CUDA, or CANN> - <<em id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_i12841193132016">Python version</em>> - <<em id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_i473014350202">OS version</em>> - <<em id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_i34731139132012">CPU architecture</em>></li></ul>
|
|
</div></div>
|
|
|
|
<div class="tablenoborder"><table cellpadding="4" cellspacing="0" summary="" id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_table2450740122613" frame="border" border="1" rules="all"><caption><b>Table 2 </b>Supported AI engines and their runtime</caption><thead align="left"><tr id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_row545194016264"><th align="left" class="cellrowborder" valign="top" width="31.730000000000004%" id="mcps1.3.6.4.2.3.1.1"><p id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_p1345174032614">Engine</p>
|
|
</th>
|
|
<th align="left" class="cellrowborder" valign="top" width="68.27%" id="mcps1.3.6.4.2.3.1.2"><p id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_p174514405266">Runtime</p>
|
|
</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody><tr id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_row136266421111"><td class="cellrowborder" valign="top" width="31.730000000000004%" headers="mcps1.3.6.4.2.3.1.1 "><p id="EN-US_TOPIC_0000001943974209__p98791150185915">TensorFlow</p>
|
|
</td>
|
|
<td class="cellrowborder" valign="top" width="68.27%" headers="mcps1.3.6.4.2.3.1.2 "><p id="EN-US_TOPIC_0000001943974209__p62351055262">tensorflow_1.15.0-cann_6.3.0-py_3.7-euler_2.8.3-aarch64</p>
|
|
</td>
|
|
</tr>
|
|
<tr id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_row615691161619"><td class="cellrowborder" valign="top" width="31.730000000000004%" headers="mcps1.3.6.4.2.3.1.1 "><p id="EN-US_TOPIC_0000001943974209__p110373414592">MindSpore</p>
|
|
</td>
|
|
<td class="cellrowborder" valign="top" width="68.27%" headers="mcps1.3.6.4.2.3.1.2 "><p id="EN-US_TOPIC_0000001943974209__p17724141543219">mindspore_2.0.0-cann_6.3.0-py_3.7-euler_2.8.3-aarch64</p>
|
|
</td>
|
|
</tr>
|
|
<tr id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_row6152163411511"><td class="cellrowborder" valign="top" width="31.730000000000004%" headers="mcps1.3.6.4.2.3.1.1 "><p id="EN-US_TOPIC_0000001943974209__en-us_topic_0171858287_p121532034131511">PyTorch</p>
|
|
</td>
|
|
<td class="cellrowborder" valign="top" width="68.27%" headers="mcps1.3.6.4.2.3.1.2 "><p id="EN-US_TOPIC_0000001943974209__p12217102419324">pytorch_1.11.0-cann_6.3.0-py_3.7-euler_2.8.3-aarch64</p>
|
|
</td>
|
|
</tr>
|
|
</tbody>
|
|
</table>
|
|
</div>
|
|
</div>
|
|
</div>
|
|
<div>
|
|
<div class="familylinks">
|
|
<div class="parentlink"><strong>Parent topic:</strong> <a href="inference-modelarts-0002.html">Managing AI Applications</a></div>
|
|
</div>
|
|
</div>
|
|
|