1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
|
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
# Define a network structure.
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# The second dimension of the input must be 784.
self.hidden1 = nn.Linear(784, 5120, bias=False)
self.output = nn.Linear(5120, 10, bias=False)
def forward(self, x):
x = x.view(x.size()[0], -1)
x = F.relu((self.hidden1(x)))
x = F.dropout(x, 0.2)
x = self.output(x)
return F.log_softmax(x)
def train(model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
if batch_idx % 10 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test( model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
device = torch.device("cpu")
batch_size=64
kwargs={}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('.', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor()
])),
batch_size=batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('.', train=False, transform=transforms.Compose([
transforms.ToTensor()
])),
batch_size=1000, shuffle=True, **kwargs)
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
optimizer = optim.Adam(model.parameters())
for epoch in range(1, 2 + 1):
train(model, device, train_loader, optimizer, epoch)
test(model, device, test_loader)
|