16 KiB
Querying Job Engine Specifications
Function
This API is used to query the engine type and version of a specified job.
You must specify the engine specifications when creating a training job or an inference job.
URI
GET /v1/{project_id}/job/ai-engines
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
project_id |
Yes |
String |
Project ID. For details about how to obtain the project ID, see Obtaining a Project ID. |
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
job_type |
No |
String |
Job type. The value can be train or inference. |
Request Body
None
Response Body
Parameter |
Type |
Description |
---|---|---|
is_success |
Boolean |
Whether the request is successful |
error_message |
String |
Error message of a failed API call. This parameter is not included when the API call succeeds. |
error_code |
String |
Error code of a failed API call. For details, see Error Codes. This parameter is not included when the API call succeeds. |
engines |
engines array |
List of engine specifications attributes. For details, see Table 4. |
Parameter |
Type |
Description |
---|---|---|
engine_type |
Integer |
Engine type of a training job
|
engine_id |
Long |
ID of the engine selected for a training job |
engine_name |
String |
Name of the engine selected for a training job |
engine_version |
String |
Version of the engine selected for a training job |
Samples
The following shows how to query the engine specifications of a training job.
- Sample request
GET https://endpoint/v1/{project_id}/job/ai-engines?job_type=train
- Successful sample response
{ "is_success": true, "engines": [ { "engine_type": 1, "engine_name": "TensorFlow", "engine_id": 1, "engine_version": "TF-1.4.0-python2.7" } ] }
- Failed sample response
{ "is_success": false, "error_message": "Error string", "error_code": "ModelArts.0105" }
Status Code
For details about the status code, see Table 1.
Error Codes
See Error Codes.