diff --git a/docs/modelarts/umn/ALL_META.TXT.json b/docs/modelarts/umn/ALL_META.TXT.json index 997fed5f..21eb6962 100644 --- a/docs/modelarts/umn/ALL_META.TXT.json +++ b/docs/modelarts/umn/ALL_META.TXT.json @@ -1200,11 +1200,61 @@ "githuburl":"" }, { - "uri":"modelarts_23_0057.html", + "uri":"modelarts_23_0106.html", "product_code":"modelarts", "code":"121", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", + "kw":"Model Compression and Conversion", + "title":"Model Compression and Conversion", + "githuburl":"" + }, + { + "uri":"modelarts_23_0107.html", + "product_code":"modelarts", + "code":"122", + "des":"To obtain higher computing power, you can deploy the models created on ModelArts or a local PC on the Ascend chip. In this case, you need to compress or convert the model", + "doc_type":"usermanual", + "kw":"Compressing and Converting Models,Model Compression and Conversion,User Guide", + "title":"Compressing and Converting Models", + "githuburl":"" + }, + { + "uri":"modelarts_23_0108.html", + "product_code":"modelarts", + "code":"123", + "des":"During model conversion, the model input directory must comply with certain specifications. This section describes how to upload your model package to OBS.The requirement", + "doc_type":"usermanual", + "kw":"Model Input Path Specifications,Model Compression and Conversion,User Guide", + "title":"Model Input Path Specifications", + "githuburl":"" + }, + { + "uri":"modelarts_23_0109.html", + "product_code":"modelarts", + "code":"124", + "des":"The following describes the output path of the model run on the Ascend chip after conversion:For TensorFlow-based models, the output path must comply with the following s", + "doc_type":"usermanual", + "kw":"Model Output Path Description,Model Compression and Conversion,User Guide", + "title":"Model Output Path Description", + "githuburl":"" + }, + { + "uri":"modelarts_23_0110.html", + "product_code":"modelarts", + "code":"125", + "des":"ModelArts provides the following conversion templates based on different AI frameworks:TF-FrozenGraph-To-Ascend-C32TF-SavedModel-To-Ascend-C32Convert the model trained by", + "doc_type":"usermanual", + "kw":"Conversion Templates,Model Compression and Conversion,User Guide", + "title":"Conversion Templates", + "githuburl":"" + }, + { + "uri":"modelarts_23_0057.html", + "product_code":"modelarts", + "code":"126", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", "kw":"Model Deployment", "title":"Model Deployment", "githuburl":"" @@ -1212,7 +1262,7 @@ { "uri":"modelarts_23_0058.html", "product_code":"modelarts", - "code":"122", + "code":"127", "des":"After a training job is complete and a model is generated, you can deploy the model on the Service Deployment page. You can also deploy the model imported from OBS. Model", "doc_type":"usermanual", "kw":"Introduction to Model Deployment,Model Deployment,User Guide", @@ -1222,7 +1272,7 @@ { "uri":"modelarts_23_0059.html", "product_code":"modelarts", - "code":"123", + "code":"128", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Real-Time Services", @@ -1232,7 +1282,7 @@ { "uri":"modelarts_23_0060.html", "product_code":"modelarts", - "code":"124", + "code":"129", "des":"After a model is prepared, you can deploy the model as a real-time service and predict and call the service.A maximum of one real-time service can be deployed.Data has be", "doc_type":"usermanual", "kw":"Deploying a Model as a Real-Time Service,Real-Time Services,User Guide", @@ -1242,7 +1292,7 @@ { "uri":"modelarts_23_0061.html", "product_code":"modelarts", - "code":"125", + "code":"130", "des":"After a model is deployed as a real-time service, you can access the service page to view its details.Log in to the ModelArts management console and choose Service Deploy", "doc_type":"usermanual", "kw":"Viewing Service Details,Real-Time Services,User Guide", @@ -1252,7 +1302,7 @@ { "uri":"modelarts_23_0062.html", "product_code":"modelarts", - "code":"126", + "code":"131", "des":"After a model is deployed as a real-time service, you can debug code or add files for testing on the Prediction tab page. Based on the input request (JSON text or file) d", "doc_type":"usermanual", "kw":"Testing a Service,Real-Time Services,User Guide", @@ -1262,7 +1312,7 @@ { "uri":"modelarts_23_0063.html", "product_code":"modelarts", - "code":"127", + "code":"132", "des":"If a real-time service is in the Running state, the real-time service has been deployed successfully. This service provides a standard RESTful API for users to call. Befo", "doc_type":"usermanual", "kw":"Accessing a Real-Time Service (Token-based Authentication),Real-Time Services,User Guide", @@ -1272,7 +1322,7 @@ { "uri":"modelarts_23_0065.html", "product_code":"modelarts", - "code":"128", + "code":"133", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Batch Services", @@ -1282,7 +1332,7 @@ { "uri":"modelarts_23_0066.html", "product_code":"modelarts", - "code":"129", + "code":"134", "des":"After a model is prepared, you can deploy it as a batch service. The Service Deployment > Batch Services page lists all batch services. You can enter a service name in th", "doc_type":"usermanual", "kw":"Deploying a Model as a Batch Service,Batch Services,User Guide", @@ -1292,7 +1342,7 @@ { "uri":"modelarts_23_0067.html", "product_code":"modelarts", - "code":"130", + "code":"135", "des":"When deploying a batch service, you can select the location of the output data directory. You can view the running result of the batch service that is in the Running comp", "doc_type":"usermanual", "kw":"Viewing the Batch Service Prediction Result,Batch Services,User Guide", @@ -1302,7 +1352,7 @@ { "uri":"modelarts_23_0068.html", "product_code":"modelarts", - "code":"131", + "code":"136", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Edge Services", @@ -1312,7 +1362,7 @@ { "uri":"modelarts_23_0069.html", "product_code":"modelarts", - "code":"132", + "code":"137", "des":"After the model is prepared, you can deploy it as an edge service. The Service Deployment > Edge Services page lists all edge services. You can enter a service name in th", "doc_type":"usermanual", "kw":"Deploying a Model as an Edge Service,Edge Services,User Guide", @@ -1322,7 +1372,7 @@ { "uri":"modelarts_23_0070.html", "product_code":"modelarts", - "code":"133", + "code":"138", "des":"If the edge service and edge node are in the Running status, the edge service has been successfully deployed on the edge node.You can use either of the following methods ", "doc_type":"usermanual", "kw":"Accessing an Edge Service,Edge Services,User Guide", @@ -1332,7 +1382,7 @@ { "uri":"modelarts_23_0071.html", "product_code":"modelarts", - "code":"134", + "code":"139", "des":"For a deployed service, you can modify its basic information to match service changes. You can modify the basic information about a service in either of the following way", "doc_type":"usermanual", "kw":"Modifying a Service,Model Deployment,User Guide", @@ -1342,7 +1392,7 @@ { "uri":"modelarts_23_0072.html", "product_code":"modelarts", - "code":"135", + "code":"140", "des":"You can start services in the Successful, Abnormal, or Stopped status. Services in the Deploying status cannot be started. A service is billed when it is started and in t", "doc_type":"usermanual", "kw":"Starting or Stopping a Service,Model Deployment,User Guide", @@ -1352,7 +1402,7 @@ { "uri":"modelarts_23_0073.html", "product_code":"modelarts", - "code":"136", + "code":"141", "des":"If a service is no longer in use, you can delete it to release resources.Log in to the ModelArts management console and choose Service Deployment from the left navigation", "doc_type":"usermanual", "kw":"Deleting a Service,Model Deployment,User Guide", @@ -1362,7 +1412,7 @@ { "uri":"modelarts_23_0076.html", "product_code":"modelarts", - "code":"137", + "code":"142", "des":"When using ModelArts to implement AI Development Lifecycle, you can use two different resource pools to train and deploy models.Public Resource Pool: provides public larg", "doc_type":"usermanual", "kw":"Resource Pools,User Guide", @@ -1372,7 +1422,7 @@ { "uri":"modelarts_23_0083.html", "product_code":"modelarts", - "code":"138", + "code":"143", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Custom Images", @@ -1382,7 +1432,7 @@ { "uri":"modelarts_23_0084.html", "product_code":"modelarts", - "code":"139", + "code":"144", "des":"ModelArts provides multiple frequently-used built-in engines. However, when users have special requirements for the deep learning engine and development library, the buil", "doc_type":"usermanual", "kw":"Introduction to Custom Images,Custom Images,User Guide", @@ -1392,7 +1442,7 @@ { "uri":"modelarts_23_0085.html", "product_code":"modelarts", - "code":"140", + "code":"145", "des":"ModelArts allows you to use custom images to create training jobs and import models. Before creating and uploading a custom image, understand the following information:So", "doc_type":"usermanual", "kw":"Creating and Uploading a Custom Image,Custom Images,User Guide", @@ -1402,7 +1452,7 @@ { "uri":"modelarts_23_0216.html", "product_code":"modelarts", - "code":"141", + "code":"146", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"For Training Models", @@ -1412,7 +1462,7 @@ { "uri":"modelarts_23_0217.html", "product_code":"modelarts", - "code":"142", + "code":"147", "des":"When creating an image using locally developed models and training scripts, ensure that they meet the specifications defined by ModelArts.Custom images cannot contain mal", "doc_type":"usermanual", "kw":"Specifications for Custom Images Used for Training Jobs,For Training Models,User Guide", @@ -1422,7 +1472,7 @@ { "uri":"modelarts_23_0087.html", "product_code":"modelarts", - "code":"143", + "code":"148", "des":"After creating and uploading a custom image to SWR, you can use the image to create a training job on the ModelArts management console to complete model training.You have", "doc_type":"usermanual", "kw":"Creating a Training Job Using a Custom Image (GPU),For Training Models,User Guide", @@ -1432,7 +1482,7 @@ { "uri":"modelarts_23_0218.html", "product_code":"modelarts", - "code":"144", + "code":"149", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"For Importing Models", @@ -1442,7 +1492,7 @@ { "uri":"modelarts_23_0219.html", "product_code":"modelarts", - "code":"145", + "code":"150", "des":"When creating an image using locally developed models, ensure that they meet the specifications defined by ModelArts.Custom images cannot contain malicious code.The size ", "doc_type":"usermanual", "kw":"Specifications for Custom Images Used for Importing Models,For Importing Models,User Guide", @@ -1452,7 +1502,7 @@ { "uri":"modelarts_23_0086.html", "product_code":"modelarts", - "code":"146", + "code":"151", "des":"After creating and uploading a custom image to SWR, you can use the image to import a model and deploy the model as a service on the ModelArts management console.You have", "doc_type":"usermanual", "kw":"Importing a Model Using a Custom Image,For Importing Models,User Guide", @@ -1462,7 +1512,7 @@ { "uri":"modelarts_23_0090.html", "product_code":"modelarts", - "code":"147", + "code":"152", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Model Package Specifications", @@ -1472,7 +1522,7 @@ { "uri":"modelarts_23_0091.html", "product_code":"modelarts", - "code":"148", + "code":"153", "des":"When you import models in Model Management, if the meta model is imported from OBS or a container image, the model package must meet the following specifications:The mode", "doc_type":"usermanual", "kw":"Model Package Specifications,Model Package Specifications,User Guide", @@ -1482,7 +1532,7 @@ { "uri":"modelarts_23_0092.html", "product_code":"modelarts", - "code":"149", + "code":"154", "des":"A model developer needs to compile a configuration file when publishing a model. The model configuration file describes the model usage, computing framework, precision, i", "doc_type":"usermanual", "kw":"Specifications for Compiling the Model Configuration File,Model Package Specifications,User Guide", @@ -1492,7 +1542,7 @@ { "uri":"modelarts_23_0093.html", "product_code":"modelarts", - "code":"150", + "code":"155", "des":"This section describes how to compile model inference code in ModelArts. The following also provides an example of inference code for the TensorFlow engine and an example", "doc_type":"usermanual", "kw":"Specifications for Compiling Model Inference Code,Model Package Specifications,User Guide", @@ -1502,7 +1552,7 @@ { "uri":"modelarts_23_0097.html", "product_code":"modelarts", - "code":"151", + "code":"156", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Model Templates", @@ -1512,7 +1562,7 @@ { "uri":"modelarts_23_0098.html", "product_code":"modelarts", - "code":"152", + "code":"157", "des":"Because the configurations of models with the same functions are similar, ModelArts integrates the configurations of such models into a common template. By using this tem", "doc_type":"usermanual", "kw":"Introduction to Model Templates,Model Templates,User Guide", @@ -1522,7 +1572,7 @@ { "uri":"modelarts_23_0118.html", "product_code":"modelarts", - "code":"153", + "code":"158", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Template Description", @@ -1532,7 +1582,7 @@ { "uri":"modelarts_23_0161.html", "product_code":"modelarts", - "code":"154", + "code":"159", "des":"AI engine: TensorFlow 1.8; Environment: Python 2.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or appl", "doc_type":"usermanual", "kw":"TensorFlow-py27 General Template,Template Description,User Guide", @@ -1542,7 +1592,7 @@ { "uri":"modelarts_23_0162.html", "product_code":"modelarts", - "code":"155", + "code":"160", "des":"AI engine: TensorFlow 1.8; Environment: Python 3.6; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or appl", "doc_type":"usermanual", "kw":"TensorFlow-py36 General Template,Template Description,User Guide", @@ -1552,7 +1602,7 @@ { "uri":"modelarts_23_0163.html", "product_code":"modelarts", - "code":"156", + "code":"161", "des":"AI engine: MXNet 1.2.1; Environment: Python 2.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or applica", "doc_type":"usermanual", "kw":"MXNet-py27 General Template,Template Description,User Guide", @@ -1562,7 +1612,7 @@ { "uri":"modelarts_23_0164.html", "product_code":"modelarts", - "code":"157", + "code":"162", "des":"AI engine: MXNet 1.2.1; Environment: Python 3.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or applica", "doc_type":"usermanual", "kw":"MXNet-py37 General Template,Template Description,User Guide", @@ -1572,7 +1622,7 @@ { "uri":"modelarts_23_0165.html", "product_code":"modelarts", - "code":"158", + "code":"163", "des":"AI engine: PyTorch 1.0; Environment: Python 2.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or applica", "doc_type":"usermanual", "kw":"PyTorch-py27 General Template,Template Description,User Guide", @@ -1582,7 +1632,7 @@ { "uri":"modelarts_23_0166.html", "product_code":"modelarts", - "code":"159", + "code":"164", "des":"AI engine: PyTorch 1.0; Environment: Python 3.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or applica", "doc_type":"usermanual", "kw":"PyTorch-py37 General Template,Template Description,User Guide", @@ -1592,7 +1642,7 @@ { "uri":"modelarts_23_0167.html", "product_code":"modelarts", - "code":"160", + "code":"165", "des":"AI engine: CPU-based Caffe 1.0; Environment: Python 2.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or", "doc_type":"usermanual", "kw":"Caffe-CPU-py27 General Template,Template Description,User Guide", @@ -1602,7 +1652,7 @@ { "uri":"modelarts_23_0168.html", "product_code":"modelarts", - "code":"161", + "code":"166", "des":"AI engine: GPU-based Caffe 1.0; Environment: Python 2.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or", "doc_type":"usermanual", "kw":"Caffe-GPU-py27 General Template,Template Description,User Guide", @@ -1612,7 +1662,7 @@ { "uri":"modelarts_23_0169.html", "product_code":"modelarts", - "code":"162", + "code":"167", "des":"AI engine: CPU-based Caffe 1.0; Environment: Python 3.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or", "doc_type":"usermanual", "kw":"Caffe-CPU-py37 General Template,Template Description,User Guide", @@ -1622,7 +1672,7 @@ { "uri":"modelarts_23_0170.html", "product_code":"modelarts", - "code":"163", + "code":"168", "des":"AI engine: GPU-based Caffe 1.0; Environment: Python 3.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or", "doc_type":"usermanual", "kw":"Caffe-GPU-py37 General Template,Template Description,User Guide", @@ -1632,7 +1682,7 @@ { "uri":"modelarts_23_0099.html", "product_code":"modelarts", - "code":"164", + "code":"169", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Input and Output Modes", @@ -1642,7 +1692,7 @@ { "uri":"modelarts_23_0100.html", "product_code":"modelarts", - "code":"165", + "code":"170", "des":"This is a built-in input and output mode for object detection. The models using this mode are identified as object detection models. The prediction request path is /, the", "doc_type":"usermanual", "kw":"Built-in Object Detection Mode,Input and Output Modes,User Guide", @@ -1652,7 +1702,7 @@ { "uri":"modelarts_23_0101.html", "product_code":"modelarts", - "code":"166", + "code":"171", "des":"The built-in image processing input and output mode can be applied to models such as image classification, object detection, and image semantic segmentation. The predicti", "doc_type":"usermanual", "kw":"Built-in Image Processing Mode,Input and Output Modes,User Guide", @@ -1662,7 +1712,7 @@ { "uri":"modelarts_23_0102.html", "product_code":"modelarts", - "code":"167", + "code":"172", "des":"This is a built-in input and output mode for predictive analytics. The models using this mode are identified as predictive analytics models. The prediction request path i", "doc_type":"usermanual", "kw":"Built-in Predictive Analytics Mode,Input and Output Modes,User Guide", @@ -1672,7 +1722,7 @@ { "uri":"modelarts_23_0103.html", "product_code":"modelarts", - "code":"168", + "code":"173", "des":"The undefined mode does not define the input and output mode. The input and output mode is determined by the model. Select this mode only when the existing input and outp", "doc_type":"usermanual", "kw":"Undefined Mode,Input and Output Modes,User Guide", @@ -1682,7 +1732,7 @@ { "uri":"modelarts_23_0172.html", "product_code":"modelarts", - "code":"169", + "code":"174", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Examples of Custom Scripts", @@ -1692,7 +1742,7 @@ { "uri":"modelarts_23_0173.html", "product_code":"modelarts", - "code":"170", + "code":"175", "des":"TensorFlow has two types of APIs: Keras and tf. Keras and tf use different code for training and saving models, but the same code for inference.", "doc_type":"usermanual", "kw":"TensorFlow,Examples of Custom Scripts,User Guide", @@ -1702,7 +1752,7 @@ { "uri":"modelarts_23_0175.html", "product_code":"modelarts", - "code":"171", + "code":"176", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"PyTorch,Examples of Custom Scripts,User Guide", @@ -1712,7 +1762,7 @@ { "uri":"modelarts_23_0176.html", "product_code":"modelarts", - "code":"172", + "code":"177", "des":"lenet_train_test.prototxt filelenet_solver.prototxt fileTrain the model.The caffemodel file is generated after model training. Rewrite the lenet_train_test.prototxt file ", "doc_type":"usermanual", "kw":"Caffe,Examples of Custom Scripts,User Guide", @@ -1722,7 +1772,7 @@ { "uri":"modelarts_23_0177.html", "product_code":"modelarts", - "code":"173", + "code":"178", "des":"Before training, download the iris.csv dataset, decompress it, and upload it to the /home/ma-user/work/ directory of the notebook instance. Download the iris.csv dataset ", "doc_type":"usermanual", "kw":"XGBoost,Examples of Custom Scripts,User Guide", @@ -1732,7 +1782,7 @@ { "uri":"modelarts_23_0178.html", "product_code":"modelarts", - "code":"174", + "code":"179", "des":"After the model is saved, it must be uploaded to the OBS directory before being published. The config.json configuration and customize_service.py must be contained during", "doc_type":"usermanual", "kw":"PySpark,Examples of Custom Scripts,User Guide", @@ -1742,7 +1792,7 @@ { "uri":"modelarts_23_0179.html", "product_code":"modelarts", - "code":"175", + "code":"180", "des":"Before training, download the iris.csv dataset, decompress it, and upload it to the /home/ma-user/work/ directory of the notebook instance. Download the iris.csv dataset ", "doc_type":"usermanual", "kw":"Scikit Learn,Examples of Custom Scripts,User Guide", @@ -1752,7 +1802,7 @@ { "uri":"modelarts_23_0077.html", "product_code":"modelarts", - "code":"176", + "code":"181", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Permissions Management", @@ -1762,7 +1812,7 @@ { "uri":"modelarts_23_0078.html", "product_code":"modelarts", - "code":"177", + "code":"182", "des":"A fine-grained policy is a set of permissions defining which operations on which cloud services can be performed. Each policy can define multiple permissions. After a pol", "doc_type":"usermanual", "kw":"Basic Concepts,Permissions Management,User Guide", @@ -1772,7 +1822,7 @@ { "uri":"modelarts_23_0079.html", "product_code":"modelarts", - "code":"178", + "code":"183", "des":"A fine-grained policy consists of the policy version (the Version field) and statement (the Statement field).Version: Distinguishes between role-based access control (RBA", "doc_type":"usermanual", "kw":"Creating a User and Granting Permissions,Permissions Management,User Guide", @@ -1782,7 +1832,7 @@ { "uri":"modelarts_23_0080.html", "product_code":"modelarts", - "code":"179", + "code":"184", "des":"If default policies cannot meet the requirements on fine-grained access control, you can create custom policies and assign the policies to the user group.You can create c", "doc_type":"usermanual", "kw":"Creating a Custom Policy,Permissions Management,User Guide", @@ -1792,7 +1842,7 @@ { "uri":"modelarts_23_0186.html", "product_code":"modelarts", - "code":"180", + "code":"185", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Monitoring", @@ -1802,7 +1852,7 @@ { "uri":"modelarts_23_0187.html", "product_code":"modelarts", - "code":"181", + "code":"186", "des":"The cloud service platform provides Cloud Eye to help you better understand the status of your ModelArts real-time services and models. You can use Cloud Eye to automatic", "doc_type":"usermanual", "kw":"ModelArts Metrics,Monitoring,User Guide", @@ -1812,7 +1862,7 @@ { "uri":"modelarts_23_0188.html", "product_code":"modelarts", - "code":"182", + "code":"187", "des":"Setting alarm rules allows you to customize the monitored objects and notification policies so that you can know the status of ModelArts real-time services and models in ", "doc_type":"usermanual", "kw":"Setting Alarm Rules,Monitoring,User Guide", @@ -1822,7 +1872,7 @@ { "uri":"modelarts_23_0189.html", "product_code":"modelarts", - "code":"183", + "code":"188", "des":"Cloud Eye on the cloud service platform monitors the status of ModelArts real-time services and model loads. You can obtain the monitoring metrics of each ModelArts real-", "doc_type":"usermanual", "kw":"Viewing Monitoring Metrics,Monitoring,User Guide", @@ -1832,7 +1882,7 @@ { "uri":"modelarts_23_0249.html", "product_code":"modelarts", - "code":"184", + "code":"189", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Audit Logs", @@ -1842,7 +1892,7 @@ { "uri":"modelarts_23_0250.html", "product_code":"modelarts", - "code":"185", + "code":"190", "des":"CTS is available on the public cloud platform. With CTS, you can record operations associated with ModelArts for later query, audit, and backtrack operations.CTS has been", "doc_type":"usermanual", "kw":"Key Operations Recorded by CTS,Audit Logs,User Guide", @@ -1852,7 +1902,7 @@ { "uri":"modelarts_23_0251.html", "product_code":"modelarts", - "code":"186", + "code":"191", "des":"After CTS is enabled, CTS starts recording operations related to ModelArts. The CTS management console stores the last seven days of operation records. This section descr", "doc_type":"usermanual", "kw":"Viewing Audit Logs,Audit Logs,User Guide", @@ -1862,7 +1912,7 @@ { "uri":"modelarts_05_0000.html", "product_code":"modelarts", - "code":"187", + "code":"192", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"FAQs", @@ -1872,7 +1922,7 @@ { "uri":"modelarts_05_0014.html", "product_code":"modelarts", - "code":"188", + "code":"193", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"General Issues", @@ -1882,7 +1932,7 @@ { "uri":"modelarts_05_0001.html", "product_code":"modelarts", - "code":"189", + "code":"194", "des":"ModelArts is a one-stop development platform for AI developers. With data preprocessing, semi-automated data labeling, distributed training, automated model building, and", "doc_type":"usermanual", "kw":"What Is ModelArts?,General Issues,User Guide", @@ -1892,7 +1942,7 @@ { "uri":"modelarts_05_0003.html", "product_code":"modelarts", - "code":"190", + "code":"195", "des":"ModelArts uses Identity and Access Management (IAM) for authentication and authorization. For more information about IAM, see Identity and Access Management User Guide.Mo", "doc_type":"usermanual", "kw":"What Are The Relationships Between ModelArts And Other Services,General Issues,User Guide", @@ -1902,7 +1952,7 @@ { "uri":"modelarts_05_0004.html", "product_code":"modelarts", - "code":"191", + "code":"196", "des":"Log in to the console, enter the My Credentials page, and choose Access Keys > Create Access Key.In the Create Access Key dialog box that is displayed, use the login pass", "doc_type":"usermanual", "kw":"How Do I Obtain Access Keys?,General Issues,User Guide", @@ -1912,7 +1962,7 @@ { "uri":"modelarts_05_0013.html", "product_code":"modelarts", - "code":"192", + "code":"197", "des":"Before using ModelArts to develop AI models, data needs to be uploaded to an OBS bucket. You can log in to the OBS console to create an OBS bucket, create a folder, and u", "doc_type":"usermanual", "kw":"How Do I Upload Data to OBS?,General Issues,User Guide", @@ -1922,7 +1972,7 @@ { "uri":"modelarts_05_0128.html", "product_code":"modelarts", - "code":"193", + "code":"198", "des":"Supported AI frameworks and versions of ModelArts vary slightly based on the development environment, training jobs, and model inference (model management and deployment)", "doc_type":"usermanual", "kw":"Which AI Frameworks Does ModelArts Support?,General Issues,User Guide", @@ -1932,7 +1982,7 @@ { "uri":"modelarts_21_0055.html", "product_code":"modelarts", - "code":"194", + "code":"199", "des":"For common users, ModelArts provides the predictive analytics function of ExeML to train models based on structured data.For advanced users, ModelArts provides the notebo", "doc_type":"usermanual", "kw":"How Do I Use ModelArts to Train Models Based on Structured Data?,General Issues,User Guide", @@ -1942,7 +1992,7 @@ { "uri":"modelarts_21_0057.html", "product_code":"modelarts", - "code":"195", + "code":"200", "des":"The current version supports multiple projects.Multi-projects refers to IAM projects. ModelArts supports multiple IAM projects, without requiring EPS separately.", "doc_type":"usermanual", "kw":"Does ModelArts Support Multiple Projects?,General Issues,User Guide", @@ -1952,7 +2002,7 @@ { "uri":"modelarts_21_0058.html", "product_code":"modelarts", - "code":"196", + "code":"201", "des":"To view all files stored in OBS when using notebook instances or training jobs, use either of the following methods:OBS consoleLog in to OBS console using the current acc", "doc_type":"usermanual", "kw":"How Do I View All Files in an OBS Directory on ModelArts?,General Issues,User Guide", @@ -1962,7 +2012,7 @@ { "uri":"modelarts_21_0059.html", "product_code":"modelarts", - "code":"197", + "code":"202", "des":"No. The current ModelArts version does not support encrypted files stored in OBS.", "doc_type":"usermanual", "kw":"Does ModelArts Support Encrypted Files Stored in OBS?,General Issues,User Guide", @@ -1972,7 +2022,7 @@ { "uri":"modelarts_05_0015.html", "product_code":"modelarts", - "code":"198", + "code":"203", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"ExeML", @@ -1982,7 +2032,7 @@ { "uri":"modelarts_05_0002.html", "product_code":"modelarts", - "code":"199", + "code":"204", "des":"ExeML is the process of automating model design, parameter tuning, and model training, compression, and deployment with the labeled data. The process is free of coding an", "doc_type":"usermanual", "kw":"What Is ExeML?,ExeML,User Guide", @@ -1992,7 +2042,7 @@ { "uri":"modelarts_05_0018.html", "product_code":"modelarts", - "code":"200", + "code":"205", "des":"Image classification is an image processing method that separates different classes of targets according to the features reflected in the images. With quantitative analys", "doc_type":"usermanual", "kw":"What Are Image Classification and Object Detection?,ExeML,User Guide", @@ -2002,7 +2052,7 @@ { "uri":"modelarts_05_0005.html", "product_code":"modelarts", - "code":"201", + "code":"206", "des":"The Train button turns to be available when the training images for an image classification project are classified into at least two categories, and each category contain", "doc_type":"usermanual", "kw":"What Should I Do When the Train Button Is Unavailable After I Create an Image Classification Project", @@ -2012,7 +2062,7 @@ { "uri":"modelarts_05_0006.html", "product_code":"modelarts", - "code":"202", + "code":"207", "des":"Yes. You can add multiple labels to an image.", "doc_type":"usermanual", "kw":"Can I Add Multiple Labels to an Image for an Object Detection Project?,ExeML,User Guide", @@ -2022,7 +2072,7 @@ { "uri":"modelarts_05_0008.html", "product_code":"modelarts", - "code":"203", + "code":"208", "des":"Models created in ExeML are deployed as real-time services. You can add images or compile code to test the services, as well as call the APIs using the URLs.After model d", "doc_type":"usermanual", "kw":"What Type of Service Is Deployed in ExeML?,ExeML,User Guide", @@ -2032,7 +2082,7 @@ { "uri":"modelarts_05_0010.html", "product_code":"modelarts", - "code":"204", + "code":"209", "des":"Images in JPG, JPEG, PNG, or BMP format are supported.", "doc_type":"usermanual", "kw":"What Formats of Images Are Supported by Object Detection or Image Classification Projects?,ExeML,Use", @@ -2042,7 +2092,7 @@ { "uri":"modelarts_21_0062.html", "product_code":"modelarts", - "code":"205", + "code":"210", "des":"Data files cannot be stored in the root directory of an OBS bucket.The name of files in a dataset consists of letters, digits, hyphens (-), and underscores (_), and the f", "doc_type":"usermanual", "kw":"What Are the Requirements for Training Data When You Create a Predictive Analytics Project in ExeML?", @@ -2052,7 +2102,7 @@ { "uri":"modelarts_21_0061.html", "product_code":"modelarts", - "code":"206", + "code":"211", "des":"The model cannot be downloaded. However, you can view the model or deploy the model as a real-time service on the model management page.", "doc_type":"usermanual", "kw":"Can I Download a Model After It Is Automatically Trained?,ExeML,User Guide", @@ -2062,7 +2112,7 @@ { "uri":"modelarts_21_0060.html", "product_code":"modelarts", - "code":"207", + "code":"212", "des":"Each round of training generates a training version in an ExeML project. If a training result is unsatisfactory (for example, unsatisfactory about the training precision)", "doc_type":"usermanual", "kw":"How Do I Perform Incremental Training in an ExeML Project?,ExeML,User Guide", @@ -2072,7 +2122,7 @@ { "uri":"modelarts_05_0101.html", "product_code":"modelarts", - "code":"208", + "code":"213", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Data Management", @@ -2082,7 +2132,7 @@ { "uri":"modelarts_21_0063.html", "product_code":"modelarts", - "code":"209", + "code":"214", "des":"For the data management function, there are limits on the image size when you upload images to the datasets whose labeling type is object detection or image classificatio", "doc_type":"usermanual", "kw":"Are There Size Limits for Images to be Uploaded?,Data Management,User Guide", @@ -2092,7 +2142,7 @@ { "uri":"modelarts_05_0103.html", "product_code":"modelarts", - "code":"210", + "code":"215", "des":"Failed to use the manifest file of the published dataset to import data again.Data has been changed in the OBS directory of the published dataset, for example, images hav", "doc_type":"usermanual", "kw":"Why Does Data Fail to Be Imported Using the Manifest File?,Data Management,User Guide", @@ -2102,7 +2152,7 @@ { "uri":"modelarts_05_0067.html", "product_code":"modelarts", - "code":"211", + "code":"216", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Notebook", @@ -2112,7 +2162,7 @@ { "uri":"modelarts_05_0071.html", "product_code":"modelarts", - "code":"212", + "code":"217", "des":"Log in to the ModelArts management console, and choose DevEnviron > Notebooks.In the notebook list, click Open in the Operation column of the target notebook instance to ", "doc_type":"usermanual", "kw":"How Do I Enable the Terminal Function in DevEnviron of ModelArts?,Notebook,User Guide", @@ -2122,7 +2172,7 @@ { "uri":"modelarts_05_0022.html", "product_code":"modelarts", - "code":"213", + "code":"218", "des":"Multiple environments have been integrated into ModelArts Notebook. These environments contain Jupyter Notebook and Python packages, including TensorFlow, MXNet, Caffe, P", "doc_type":"usermanual", "kw":"How Do I Install External Libraries in a Notebook Instance?,Notebook,User Guide", @@ -2132,7 +2182,7 @@ { "uri":"modelarts_21_0065.html", "product_code":"modelarts", - "code":"214", + "code":"219", "des":"Notebook instances in DevEnviron support the Keras engine. The Keras engine is not supported in job training and model deployment (inference).Keras is an advanced neural ", "doc_type":"usermanual", "kw":"Is the Keras Engine Supported?,Notebook,User Guide", @@ -2142,7 +2192,7 @@ { "uri":"modelarts_21_0066.html", "product_code":"modelarts", - "code":"215", + "code":"220", "des":"After the training code is debugged in a notebook instance, if you need to use the training code for training jobs on ModelArts, convert the ipynb file into a Python file", "doc_type":"usermanual", "kw":"How Do I Use Training Code in Training Jobs After Debugging the Code in a Notebook Instance?,Noteboo", @@ -2152,7 +2202,7 @@ { "uri":"modelarts_21_0067.html", "product_code":"modelarts", - "code":"216", + "code":"221", "des":"In the notebook instance, error message \"No Space left...\" is displayed after the pip install command is run.You are advised to run the pip install --no-cache ** command", "doc_type":"usermanual", "kw":"What Should I Do When the System Displays an Error Message Indicating that No Space Left After I Run", @@ -2162,7 +2212,7 @@ { "uri":"modelarts_05_0024.html", "product_code":"modelarts", - "code":"217", + "code":"222", "des":"In a notebook instance, you can call the ModelArts MoXing API or SDK to exchange data with OBS for uploading a file to OBS or downloading a file from OBS to the notebook ", "doc_type":"usermanual", "kw":"How Do I Upload a File from a Notebook Instance to OBS or Download a File from OBS to a Notebook Ins", @@ -2172,7 +2222,7 @@ { "uri":"modelarts_21_0068.html", "product_code":"modelarts", - "code":"218", + "code":"223", "des":"Small files (files smaller than 100 MB)Open a notebook instance and click Upload in the upper right corner to upload a local file to the notebook instance.Upload a small ", "doc_type":"usermanual", "kw":"How Do I Upload Local Files to a Notebook Instance?,Notebook,User Guide", @@ -2182,7 +2232,7 @@ { "uri":"modelarts_05_0045.html", "product_code":"modelarts", - "code":"219", + "code":"224", "des":"If you use OBS to store the notebook instance, after you click upload, the data is directly uploaded to the target OBS path, that is, the OBS path specified when the note", "doc_type":"usermanual", "kw":"Where Will the Data Be Uploaded to?,Notebook,User Guide", @@ -2192,7 +2242,7 @@ { "uri":"modelarts_21_0069.html", "product_code":"modelarts", - "code":"220", + "code":"225", "des":"The following uses the TensorFlow-1.8 engine as an example. The operations on other engines are similar. You only need to replace the engine name and version number in th", "doc_type":"usermanual", "kw":"Should I Access the Python Environment Same as the Notebook Kernel of the Current Instance in the Te", @@ -2202,7 +2252,7 @@ { "uri":"modelarts_21_0070.html", "product_code":"modelarts", - "code":"221", + "code":"226", "des":"If a notebook instance fails to execute code, you can locate and rectify the fault based on the following scenarios:If the execution of a cell is suspended or lasts for a", "doc_type":"usermanual", "kw":"What Do I Do If a Notebook Instance Fails to Execute Code?,Notebook,User Guide", @@ -2212,7 +2262,7 @@ { "uri":"modelarts_21_0071.html", "product_code":"modelarts", - "code":"222", + "code":"227", "des":"Currently, Terminal in ModelArts DevEnviron does not support apt-get. You can use a custom image to support it.", "doc_type":"usermanual", "kw":"Does ModelArts DevEnviron Support apt-get?,Notebook,User Guide", @@ -2222,7 +2272,7 @@ { "uri":"modelarts_05_0080.html", "product_code":"modelarts", - "code":"223", + "code":"228", "des":"/cache is a temporary directory and will not be saved. After an instance using OBS storage is stopped, data in the ~work directory will be deleted. After a notebook insta", "doc_type":"usermanual", "kw":"Do Files in /cache Still Exist After a Notebook Instance is Stopped or Restarted? How Do I Avoid a R", @@ -2232,7 +2282,7 @@ { "uri":"modelarts_05_0081.html", "product_code":"modelarts", - "code":"224", + "code":"229", "des":"Log in to the ModelArts management console, and choose DevEnviron > Notebooks.In the Operation column of the target notebook instance in the notebook list, click Open to ", "doc_type":"usermanual", "kw":"Where Is Data Stored After the Sync OBS Function Is Used?,Notebook,User Guide", @@ -2242,7 +2292,7 @@ { "uri":"modelarts_21_0072.html", "product_code":"modelarts", - "code":"225", + "code":"230", "des":"If you select GPU when creating a notebook instance, perform the following operations to view GPU usage:Log in to the ModelArts management console, and choose DevEnviron ", "doc_type":"usermanual", "kw":"How Do I View GPU Usage on the Notebook?,Notebook,User Guide", @@ -2252,7 +2302,7 @@ { "uri":"modelarts_21_0073.html", "product_code":"modelarts", - "code":"226", + "code":"231", "des":"When creating a notebook instance, select the target Python development environment. Python2 and Python3 are supported, corresponding to Python 2.7 and Python 3.6, respec", "doc_type":"usermanual", "kw":"What Python Development Environments Does Notebook Support?,Notebook,User Guide", @@ -2262,7 +2312,7 @@ { "uri":"modelarts_21_0074.html", "product_code":"modelarts", - "code":"227", + "code":"232", "des":"The python2 environment of ModelArts supports Caffe, but the python3 environment does not support it.", "doc_type":"usermanual", "kw":"Does ModelArts Support the Caffe Engine?,Notebook,User Guide", @@ -2272,7 +2322,7 @@ { "uri":"modelarts_21_0075.html", "product_code":"modelarts", - "code":"228", + "code":"233", "des":"For security purposes, notebook instances do not support sudo privilege escalation.", "doc_type":"usermanual", "kw":"Is sudo Privilege Escalation Supported?,Notebook,User Guide", @@ -2282,7 +2332,7 @@ { "uri":"modelarts_05_0030.html", "product_code":"modelarts", - "code":"229", + "code":"234", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Training Jobs", @@ -2292,7 +2342,7 @@ { "uri":"modelarts_05_0031.html", "product_code":"modelarts", - "code":"230", + "code":"235", "des":"The code directory for creating a training job has limits on the size and number of files.Delete the files except the code from the code directory or save the files in ot", "doc_type":"usermanual", "kw":"What Can I Do If the Message \"Object directory size/quantity exceeds the limit\" Is Displayed When I ", @@ -2302,7 +2352,7 @@ { "uri":"modelarts_05_0032.html", "product_code":"modelarts", - "code":"231", + "code":"236", "des":"When you use ModelArts, your data is stored in the OBS bucket. The data has a corresponding OBS path, for example, bucket_name/dir/image.jpg. ModelArts training jobs run ", "doc_type":"usermanual", "kw":"What Can I Do If \"No such file or directory\" Is Displayed In the Training Job Log?,Training Jobs,Use", @@ -2312,7 +2362,7 @@ { "uri":"modelarts_05_0063.html", "product_code":"modelarts", - "code":"232", + "code":"237", "des":"When a model references a dependency package, select a frequently-used framework to create training jobs. In addition, place the required file or installation package in ", "doc_type":"usermanual", "kw":"How Do I Create a Training Job When a Dependency Package Is Referenced in a Model?,Training Jobs,Use", @@ -2322,7 +2372,7 @@ { "uri":"modelarts_21_0077.html", "product_code":"modelarts", - "code":"233", + "code":"238", "des":"Pay attention to the following when setting training parameters:When setting running parameters for creating a training job, you only need to set the corresponding parame", "doc_type":"usermanual", "kw":"What Should I Know When Setting Training Parameters?,Training Jobs,User Guide", @@ -2332,7 +2382,7 @@ { "uri":"modelarts_21_0078.html", "product_code":"modelarts", - "code":"234", + "code":"239", "des":"In the left navigation pane of the ModelArts management console, choose Training Management > Training Jobs to go to the Training Jobs page. In the training job list, cli", "doc_type":"usermanual", "kw":"How Do I Check Resource Usage of a Training Job?,Training Jobs,User Guide", @@ -2342,7 +2392,7 @@ { "uri":"modelarts_05_0090.html", "product_code":"modelarts", - "code":"235", + "code":"240", "des":"When creating a training job, you can select CPU, GPUresources based on the size of the training job.ModelArts mounts the disk to the /cache directory. You can use this d", "doc_type":"usermanual", "kw":"What Are Sizes of the /cache Directories for Different Resource Specifications in the Training Envir", @@ -2352,7 +2402,7 @@ { "uri":"modelarts_21_0079.html", "product_code":"modelarts", - "code":"236", + "code":"241", "des":"In the script of the training job boot file, run the following commands to obtain the sizes of the to-be-copied and copied folders. Then determine whether folder copy is ", "doc_type":"usermanual", "kw":"How Do I Check Whether Folder Copy Is Complete During Job Training?,Training Jobs,User Guide", @@ -2362,7 +2412,7 @@ { "uri":"modelarts_21_0080.html", "product_code":"modelarts", - "code":"237", + "code":"242", "des":"Training job parameters can be automatically generated in the background or manually entered by users. Perform the following operations to obtain training job parameters:", "doc_type":"usermanual", "kw":"How Do I Obtain Training Job Parameters from the Boot File of the Training Job?,Training Jobs,User G", @@ -2372,7 +2422,7 @@ { "uri":"modelarts_21_0081.html", "product_code":"modelarts", - "code":"238", + "code":"243", "des":"ModelArts does not support access to the background of a training job.", "doc_type":"usermanual", "kw":"How Do I Access the Background of a Training Job?,Training Jobs,User Guide", @@ -2382,7 +2432,7 @@ { "uri":"modelarts_21_0082.html", "product_code":"modelarts", - "code":"239", + "code":"244", "des":"Storage directories of ModelArts training jobs do not affect each other. Environments are isolated from each other, and data of other jobs cannot be viewed.", "doc_type":"usermanual", "kw":"Is There Any Conflict When Models of Two Training Jobs Are Saved in the Same Directory of a Containe", @@ -2392,7 +2442,7 @@ { "uri":"modelarts_21_0083.html", "product_code":"modelarts", - "code":"240", + "code":"245", "des":"In a training job, only three valid digits are retained in a training output log. When the value of loss is too small, the value is displayed as 0.000. Log content is as ", "doc_type":"usermanual", "kw":"Only Three Valid Digits Are Retained in a Training Output Log. Can the Value of loss Be Changed?,Tra", @@ -2402,7 +2452,7 @@ { "uri":"modelarts_21_0084.html", "product_code":"modelarts", - "code":"241", + "code":"246", "des":"If you cannot access the corresponding folder by using os.system('cd xxx') in the boot script of the training job, you are advised to use the following method:", "doc_type":"usermanual", "kw":"Why Can't I Use os.system ('cd xxx') to Access the Corresponding Folder During Job Training?,Trainin", @@ -2412,7 +2462,7 @@ { "uri":"modelarts_21_0085.html", "product_code":"modelarts", - "code":"242", + "code":"247", "des":"ModelArts enables you to invoke a shell script, and you can use Python to invoke .sh. The procedure is as follows:Upload the .sh script to an OBS bucket. For example, upl", "doc_type":"usermanual", "kw":"How Do I Invoke a Shell Script in a Training Job to Execute the .sh File?,Training Jobs,User Guide", @@ -2422,7 +2472,7 @@ { "uri":"modelarts_05_0016.html", "product_code":"modelarts", - "code":"243", + "code":"248", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Model Management", @@ -2432,7 +2482,7 @@ { "uri":"modelarts_21_0086.html", "product_code":"modelarts", - "code":"244", + "code":"249", "des":"ModelArts does not support the import of models in .h5 format. You can convert the models in .h5 format of Keras to the TensorFlow format and then import the models to Mo", "doc_type":"usermanual", "kw":"How Do I Import the .h5 Model of Keras to ModelArts?,Model Management,User Guide", @@ -2442,7 +2492,7 @@ { "uri":"modelarts_05_0124.html", "product_code":"modelarts", - "code":"245", + "code":"250", "des":"ModelArts allows you to upload local models to OBS or import models stored in OBS directly into ModelArts.For details about how to import a model from OBS, see Importing ", "doc_type":"usermanual", "kw":"How Do I Import a Model Downloaded from OBS to ModelArts?,Model Management,User Guide", @@ -2452,7 +2502,7 @@ { "uri":"modelarts_05_0017.html", "product_code":"modelarts", - "code":"246", + "code":"251", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Service Deployment", @@ -2462,7 +2512,7 @@ { "uri":"modelarts_05_0012.html", "product_code":"modelarts", - "code":"247", + "code":"252", "des":"Currently, models can only be deployed as real-time services and batch services.", "doc_type":"usermanual", "kw":"What Types of Services Can Models Be Deployed as on ModelArts?,Service Deployment,User Guide", @@ -2472,7 +2522,7 @@ { "uri":"modelarts_05_0100.html", "product_code":"modelarts", - "code":"248", + "code":"253", "des":"Before importing a model, you need to place the corresponding inference code and configuration file in the model folder. When encoding with Python, you are advised to use", "doc_type":"usermanual", "kw":"What Should I Do If a Conflict Occurs When Deploying a Model As a Real-Time Service?,Service Deploym", @@ -2482,7 +2532,7 @@ { "uri":"modelarts_04_0099.html", "product_code":"modelarts", - "code":"249", + "code":"254", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Change History,User Guide", diff --git a/docs/modelarts/umn/CLASS.TXT.json b/docs/modelarts/umn/CLASS.TXT.json index c2ccdaaa..d0f1afba 100644 --- a/docs/modelarts/umn/CLASS.TXT.json +++ b/docs/modelarts/umn/CLASS.TXT.json @@ -1079,6 +1079,51 @@ "p_code":"113", "code":"120" }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Model Compression and Conversion", + "uri":"modelarts_23_0106.html", + "doc_type":"usermanual", + "p_code":"113", + "code":"121" + }, + { + "desc":"To obtain higher computing power, you can deploy the models created on ModelArts or a local PC on the Ascend chip. In this case, you need to compress or convert the model", + "product_code":"modelarts", + "title":"Compressing and Converting Models", + "uri":"modelarts_23_0107.html", + "doc_type":"usermanual", + "p_code":"121", + "code":"122" + }, + { + "desc":"During model conversion, the model input directory must comply with certain specifications. This section describes how to upload your model package to OBS.The requirement", + "product_code":"modelarts", + "title":"Model Input Path Specifications", + "uri":"modelarts_23_0108.html", + "doc_type":"usermanual", + "p_code":"121", + "code":"123" + }, + { + "desc":"The following describes the output path of the model run on the Ascend chip after conversion:For TensorFlow-based models, the output path must comply with the following s", + "product_code":"modelarts", + "title":"Model Output Path Description", + "uri":"modelarts_23_0109.html", + "doc_type":"usermanual", + "p_code":"121", + "code":"124" + }, + { + "desc":"ModelArts provides the following conversion templates based on different AI frameworks:TF-FrozenGraph-To-Ascend-C32TF-SavedModel-To-Ascend-C32Convert the model trained by", + "product_code":"modelarts", + "title":"Conversion Templates", + "uri":"modelarts_23_0110.html", + "doc_type":"usermanual", + "p_code":"121", + "code":"125" + }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", @@ -1086,7 +1131,7 @@ "uri":"modelarts_23_0057.html", "doc_type":"usermanual", "p_code":"", - "code":"121" + "code":"126" }, { "desc":"After a training job is complete and a model is generated, you can deploy the model on the Service Deployment page. You can also deploy the model imported from OBS. Model", @@ -1094,8 +1139,8 @@ "title":"Introduction to Model Deployment", "uri":"modelarts_23_0058.html", "doc_type":"usermanual", - "p_code":"121", - "code":"122" + "p_code":"126", + "code":"127" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1103,8 +1148,8 @@ "title":"Real-Time Services", "uri":"modelarts_23_0059.html", "doc_type":"usermanual", - "p_code":"121", - "code":"123" + "p_code":"126", + "code":"128" }, { "desc":"After a model is prepared, you can deploy the model as a real-time service and predict and call the service.A maximum of one real-time service can be deployed.Data has be", @@ -1112,8 +1157,8 @@ "title":"Deploying a Model as a Real-Time Service", "uri":"modelarts_23_0060.html", "doc_type":"usermanual", - "p_code":"123", - "code":"124" + "p_code":"128", + "code":"129" }, { "desc":"After a model is deployed as a real-time service, you can access the service page to view its details.Log in to the ModelArts management console and choose Service Deploy", @@ -1121,8 +1166,8 @@ "title":"Viewing Service Details", "uri":"modelarts_23_0061.html", "doc_type":"usermanual", - "p_code":"123", - "code":"125" + "p_code":"128", + "code":"130" }, { "desc":"After a model is deployed as a real-time service, you can debug code or add files for testing on the Prediction tab page. Based on the input request (JSON text or file) d", @@ -1130,8 +1175,8 @@ "title":"Testing a Service", "uri":"modelarts_23_0062.html", "doc_type":"usermanual", - "p_code":"123", - "code":"126" + "p_code":"128", + "code":"131" }, { "desc":"If a real-time service is in the Running state, the real-time service has been deployed successfully. This service provides a standard RESTful API for users to call. Befo", @@ -1139,8 +1184,8 @@ "title":"Accessing a Real-Time Service (Token-based Authentication)", "uri":"modelarts_23_0063.html", "doc_type":"usermanual", - "p_code":"123", - "code":"127" + "p_code":"128", + "code":"132" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1148,8 +1193,8 @@ "title":"Batch Services", "uri":"modelarts_23_0065.html", "doc_type":"usermanual", - "p_code":"121", - "code":"128" + "p_code":"126", + "code":"133" }, { "desc":"After a model is prepared, you can deploy it as a batch service. The Service Deployment > Batch Services page lists all batch services. You can enter a service name in th", @@ -1157,8 +1202,8 @@ "title":"Deploying a Model as a Batch Service", "uri":"modelarts_23_0066.html", "doc_type":"usermanual", - "p_code":"128", - "code":"129" + "p_code":"133", + "code":"134" }, { "desc":"When deploying a batch service, you can select the location of the output data directory. You can view the running result of the batch service that is in the Running comp", @@ -1166,8 +1211,8 @@ "title":"Viewing the Batch Service Prediction Result", "uri":"modelarts_23_0067.html", "doc_type":"usermanual", - "p_code":"128", - "code":"130" + "p_code":"133", + "code":"135" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1175,8 +1220,8 @@ "title":"Edge Services", "uri":"modelarts_23_0068.html", "doc_type":"usermanual", - "p_code":"121", - "code":"131" + "p_code":"126", + "code":"136" }, { "desc":"After the model is prepared, you can deploy it as an edge service. The Service Deployment > Edge Services page lists all edge services. You can enter a service name in th", @@ -1184,8 +1229,8 @@ "title":"Deploying a Model as an Edge Service", "uri":"modelarts_23_0069.html", "doc_type":"usermanual", - "p_code":"131", - "code":"132" + "p_code":"136", + "code":"137" }, { "desc":"If the edge service and edge node are in the Running status, the edge service has been successfully deployed on the edge node.You can use either of the following methods ", @@ -1193,8 +1238,8 @@ "title":"Accessing an Edge Service", "uri":"modelarts_23_0070.html", "doc_type":"usermanual", - "p_code":"131", - "code":"133" + "p_code":"136", + "code":"138" }, { "desc":"For a deployed service, you can modify its basic information to match service changes. You can modify the basic information about a service in either of the following way", @@ -1202,8 +1247,8 @@ "title":"Modifying a Service", "uri":"modelarts_23_0071.html", "doc_type":"usermanual", - "p_code":"121", - "code":"134" + "p_code":"126", + "code":"139" }, { "desc":"You can start services in the Successful, Abnormal, or Stopped status. Services in the Deploying status cannot be started. A service is billed when it is started and in t", @@ -1211,8 +1256,8 @@ "title":"Starting or Stopping a Service", "uri":"modelarts_23_0072.html", "doc_type":"usermanual", - "p_code":"121", - "code":"135" + "p_code":"126", + "code":"140" }, { "desc":"If a service is no longer in use, you can delete it to release resources.Log in to the ModelArts management console and choose Service Deployment from the left navigation", @@ -1220,8 +1265,8 @@ "title":"Deleting a Service", "uri":"modelarts_23_0073.html", "doc_type":"usermanual", - "p_code":"121", - "code":"136" + "p_code":"126", + "code":"141" }, { "desc":"When using ModelArts to implement AI Development Lifecycle, you can use two different resource pools to train and deploy models.Public Resource Pool: provides public larg", @@ -1230,7 +1275,7 @@ "uri":"modelarts_23_0076.html", "doc_type":"usermanual", "p_code":"", - "code":"137" + "code":"142" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1239,7 +1284,7 @@ "uri":"modelarts_23_0083.html", "doc_type":"usermanual", "p_code":"", - "code":"138" + "code":"143" }, { "desc":"ModelArts provides multiple frequently-used built-in engines. However, when users have special requirements for the deep learning engine and development library, the buil", @@ -1247,8 +1292,8 @@ "title":"Introduction to Custom Images", "uri":"modelarts_23_0084.html", "doc_type":"usermanual", - "p_code":"138", - "code":"139" + "p_code":"143", + "code":"144" }, { "desc":"ModelArts allows you to use custom images to create training jobs and import models. Before creating and uploading a custom image, understand the following information:So", @@ -1256,8 +1301,8 @@ "title":"Creating and Uploading a Custom Image", "uri":"modelarts_23_0085.html", "doc_type":"usermanual", - "p_code":"138", - "code":"140" + "p_code":"143", + "code":"145" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1265,8 +1310,8 @@ "title":"For Training Models", "uri":"modelarts_23_0216.html", "doc_type":"usermanual", - "p_code":"138", - "code":"141" + "p_code":"143", + "code":"146" }, { "desc":"When creating an image using locally developed models and training scripts, ensure that they meet the specifications defined by ModelArts.Custom images cannot contain mal", @@ -1274,8 +1319,8 @@ "title":"Specifications for Custom Images Used for Training Jobs", "uri":"modelarts_23_0217.html", "doc_type":"usermanual", - "p_code":"141", - "code":"142" + "p_code":"146", + "code":"147" }, { "desc":"After creating and uploading a custom image to SWR, you can use the image to create a training job on the ModelArts management console to complete model training.You have", @@ -1283,8 +1328,8 @@ "title":"Creating a Training Job Using a Custom Image (GPU)", "uri":"modelarts_23_0087.html", "doc_type":"usermanual", - "p_code":"141", - "code":"143" + "p_code":"146", + "code":"148" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1292,8 +1337,8 @@ "title":"For Importing Models", "uri":"modelarts_23_0218.html", "doc_type":"usermanual", - "p_code":"138", - "code":"144" + "p_code":"143", + "code":"149" }, { "desc":"When creating an image using locally developed models, ensure that they meet the specifications defined by ModelArts.Custom images cannot contain malicious code.The size ", @@ -1301,8 +1346,8 @@ "title":"Specifications for Custom Images Used for Importing Models", "uri":"modelarts_23_0219.html", "doc_type":"usermanual", - "p_code":"144", - "code":"145" + "p_code":"149", + "code":"150" }, { "desc":"After creating and uploading a custom image to SWR, you can use the image to import a model and deploy the model as a service on the ModelArts management console.You have", @@ -1310,8 +1355,8 @@ "title":"Importing a Model Using a Custom Image", "uri":"modelarts_23_0086.html", "doc_type":"usermanual", - "p_code":"144", - "code":"146" + "p_code":"149", + "code":"151" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1320,7 +1365,7 @@ "uri":"modelarts_23_0090.html", "doc_type":"usermanual", "p_code":"", - "code":"147" + "code":"152" }, { "desc":"When you import models in Model Management, if the meta model is imported from OBS or a container image, the model package must meet the following specifications:The mode", @@ -1328,8 +1373,8 @@ "title":"Model Package Specifications", "uri":"modelarts_23_0091.html", "doc_type":"usermanual", - "p_code":"147", - "code":"148" + "p_code":"152", + "code":"153" }, { "desc":"A model developer needs to compile a configuration file when publishing a model. The model configuration file describes the model usage, computing framework, precision, i", @@ -1337,8 +1382,8 @@ "title":"Specifications for Compiling the Model Configuration File", "uri":"modelarts_23_0092.html", "doc_type":"usermanual", - "p_code":"147", - "code":"149" + "p_code":"152", + "code":"154" }, { "desc":"This section describes how to compile model inference code in ModelArts. The following also provides an example of inference code for the TensorFlow engine and an example", @@ -1346,8 +1391,8 @@ "title":"Specifications for Compiling Model Inference Code", "uri":"modelarts_23_0093.html", "doc_type":"usermanual", - "p_code":"147", - "code":"150" + "p_code":"152", + "code":"155" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1356,7 +1401,7 @@ "uri":"modelarts_23_0097.html", "doc_type":"usermanual", "p_code":"", - "code":"151" + "code":"156" }, { "desc":"Because the configurations of models with the same functions are similar, ModelArts integrates the configurations of such models into a common template. By using this tem", @@ -1364,8 +1409,8 @@ "title":"Introduction to Model Templates", "uri":"modelarts_23_0098.html", "doc_type":"usermanual", - "p_code":"151", - "code":"152" + "p_code":"156", + "code":"157" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1373,8 +1418,8 @@ "title":"Template Description", "uri":"modelarts_23_0118.html", "doc_type":"usermanual", - "p_code":"151", - "code":"153" + "p_code":"156", + "code":"158" }, { "desc":"AI engine: TensorFlow 1.8; Environment: Python 2.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or appl", @@ -1382,8 +1427,8 @@ "title":"TensorFlow-py27 General Template", "uri":"modelarts_23_0161.html", "doc_type":"usermanual", - "p_code":"153", - "code":"154" + "p_code":"158", + "code":"159" }, { "desc":"AI engine: TensorFlow 1.8; Environment: Python 3.6; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or appl", @@ -1391,8 +1436,8 @@ "title":"TensorFlow-py36 General Template", "uri":"modelarts_23_0162.html", "doc_type":"usermanual", - "p_code":"153", - "code":"155" + "p_code":"158", + "code":"160" }, { "desc":"AI engine: MXNet 1.2.1; Environment: Python 2.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or applica", @@ -1400,8 +1445,8 @@ "title":"MXNet-py27 General Template", "uri":"modelarts_23_0163.html", "doc_type":"usermanual", - "p_code":"153", - "code":"156" + "p_code":"158", + "code":"161" }, { "desc":"AI engine: MXNet 1.2.1; Environment: Python 3.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or applica", @@ -1409,8 +1454,8 @@ "title":"MXNet-py37 General Template", "uri":"modelarts_23_0164.html", "doc_type":"usermanual", - "p_code":"153", - "code":"157" + "p_code":"158", + "code":"162" }, { "desc":"AI engine: PyTorch 1.0; Environment: Python 2.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or applica", @@ -1418,8 +1463,8 @@ "title":"PyTorch-py27 General Template", "uri":"modelarts_23_0165.html", "doc_type":"usermanual", - "p_code":"153", - "code":"158" + "p_code":"158", + "code":"163" }, { "desc":"AI engine: PyTorch 1.0; Environment: Python 3.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or applica", @@ -1427,8 +1472,8 @@ "title":"PyTorch-py37 General Template", "uri":"modelarts_23_0166.html", "doc_type":"usermanual", - "p_code":"153", - "code":"159" + "p_code":"158", + "code":"164" }, { "desc":"AI engine: CPU-based Caffe 1.0; Environment: Python 2.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or", @@ -1436,8 +1481,8 @@ "title":"Caffe-CPU-py27 General Template", "uri":"modelarts_23_0167.html", "doc_type":"usermanual", - "p_code":"153", - "code":"160" + "p_code":"158", + "code":"165" }, { "desc":"AI engine: GPU-based Caffe 1.0; Environment: Python 2.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or", @@ -1445,8 +1490,8 @@ "title":"Caffe-GPU-py27 General Template", "uri":"modelarts_23_0168.html", "doc_type":"usermanual", - "p_code":"153", - "code":"161" + "p_code":"158", + "code":"166" }, { "desc":"AI engine: CPU-based Caffe 1.0; Environment: Python 3.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or", @@ -1454,8 +1499,8 @@ "title":"Caffe-CPU-py37 General Template", "uri":"modelarts_23_0169.html", "doc_type":"usermanual", - "p_code":"153", - "code":"162" + "p_code":"158", + "code":"167" }, { "desc":"AI engine: GPU-based Caffe 1.0; Environment: Python 3.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or", @@ -1463,8 +1508,8 @@ "title":"Caffe-GPU-py37 General Template", "uri":"modelarts_23_0170.html", "doc_type":"usermanual", - "p_code":"153", - "code":"163" + "p_code":"158", + "code":"168" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1472,8 +1517,8 @@ "title":"Input and Output Modes", "uri":"modelarts_23_0099.html", "doc_type":"usermanual", - "p_code":"151", - "code":"164" + "p_code":"156", + "code":"169" }, { "desc":"This is a built-in input and output mode for object detection. The models using this mode are identified as object detection models. The prediction request path is /, the", @@ -1481,8 +1526,8 @@ "title":"Built-in Object Detection Mode", "uri":"modelarts_23_0100.html", "doc_type":"usermanual", - "p_code":"164", - "code":"165" + "p_code":"169", + "code":"170" }, { "desc":"The built-in image processing input and output mode can be applied to models such as image classification, object detection, and image semantic segmentation. The predicti", @@ -1490,8 +1535,8 @@ "title":"Built-in Image Processing Mode", "uri":"modelarts_23_0101.html", "doc_type":"usermanual", - "p_code":"164", - "code":"166" + "p_code":"169", + "code":"171" }, { "desc":"This is a built-in input and output mode for predictive analytics. The models using this mode are identified as predictive analytics models. The prediction request path i", @@ -1499,8 +1544,8 @@ "title":"Built-in Predictive Analytics Mode", "uri":"modelarts_23_0102.html", "doc_type":"usermanual", - "p_code":"164", - "code":"167" + "p_code":"169", + "code":"172" }, { "desc":"The undefined mode does not define the input and output mode. The input and output mode is determined by the model. Select this mode only when the existing input and outp", @@ -1508,8 +1553,8 @@ "title":"Undefined Mode", "uri":"modelarts_23_0103.html", "doc_type":"usermanual", - "p_code":"164", - "code":"168" + "p_code":"169", + "code":"173" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1518,7 +1563,7 @@ "uri":"modelarts_23_0172.html", "doc_type":"usermanual", "p_code":"", - "code":"169" + "code":"174" }, { "desc":"TensorFlow has two types of APIs: Keras and tf. Keras and tf use different code for training and saving models, but the same code for inference.", @@ -1526,8 +1571,8 @@ "title":"TensorFlow", "uri":"modelarts_23_0173.html", "doc_type":"usermanual", - "p_code":"169", - "code":"170" + "p_code":"174", + "code":"175" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1535,8 +1580,8 @@ "title":"PyTorch", "uri":"modelarts_23_0175.html", "doc_type":"usermanual", - "p_code":"169", - "code":"171" + "p_code":"174", + "code":"176" }, { "desc":"lenet_train_test.prototxt filelenet_solver.prototxt fileTrain the model.The caffemodel file is generated after model training. Rewrite the lenet_train_test.prototxt file ", @@ -1544,8 +1589,8 @@ "title":"Caffe", "uri":"modelarts_23_0176.html", "doc_type":"usermanual", - "p_code":"169", - "code":"172" + "p_code":"174", + "code":"177" }, { "desc":"Before training, download the iris.csv dataset, decompress it, and upload it to the /home/ma-user/work/ directory of the notebook instance. Download the iris.csv dataset ", @@ -1553,8 +1598,8 @@ "title":"XGBoost", "uri":"modelarts_23_0177.html", "doc_type":"usermanual", - "p_code":"169", - "code":"173" + "p_code":"174", + "code":"178" }, { "desc":"After the model is saved, it must be uploaded to the OBS directory before being published. The config.json configuration and customize_service.py must be contained during", @@ -1562,8 +1607,8 @@ "title":"PySpark", "uri":"modelarts_23_0178.html", "doc_type":"usermanual", - "p_code":"169", - "code":"174" + "p_code":"174", + "code":"179" }, { "desc":"Before training, download the iris.csv dataset, decompress it, and upload it to the /home/ma-user/work/ directory of the notebook instance. Download the iris.csv dataset ", @@ -1571,8 +1616,8 @@ "title":"Scikit Learn", "uri":"modelarts_23_0179.html", "doc_type":"usermanual", - "p_code":"169", - "code":"175" + "p_code":"174", + "code":"180" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1581,7 +1626,7 @@ "uri":"modelarts_23_0077.html", "doc_type":"usermanual", "p_code":"", - "code":"176" + "code":"181" }, { "desc":"A fine-grained policy is a set of permissions defining which operations on which cloud services can be performed. Each policy can define multiple permissions. After a pol", @@ -1589,8 +1634,8 @@ "title":"Basic Concepts", "uri":"modelarts_23_0078.html", "doc_type":"usermanual", - "p_code":"176", - "code":"177" + "p_code":"181", + "code":"182" }, { "desc":"A fine-grained policy consists of the policy version (the Version field) and statement (the Statement field).Version: Distinguishes between role-based access control (RBA", @@ -1598,8 +1643,8 @@ "title":"Creating a User and Granting Permissions", "uri":"modelarts_23_0079.html", "doc_type":"usermanual", - "p_code":"176", - "code":"178" + "p_code":"181", + "code":"183" }, { "desc":"If default policies cannot meet the requirements on fine-grained access control, you can create custom policies and assign the policies to the user group.You can create c", @@ -1607,8 +1652,8 @@ "title":"Creating a Custom Policy", "uri":"modelarts_23_0080.html", "doc_type":"usermanual", - "p_code":"176", - "code":"179" + "p_code":"181", + "code":"184" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1617,7 +1662,7 @@ "uri":"modelarts_23_0186.html", "doc_type":"usermanual", "p_code":"", - "code":"180" + "code":"185" }, { "desc":"The cloud service platform provides Cloud Eye to help you better understand the status of your ModelArts real-time services and models. You can use Cloud Eye to automatic", @@ -1625,8 +1670,8 @@ "title":"ModelArts Metrics", "uri":"modelarts_23_0187.html", "doc_type":"usermanual", - "p_code":"180", - "code":"181" + "p_code":"185", + "code":"186" }, { "desc":"Setting alarm rules allows you to customize the monitored objects and notification policies so that you can know the status of ModelArts real-time services and models in ", @@ -1634,8 +1679,8 @@ "title":"Setting Alarm Rules", "uri":"modelarts_23_0188.html", "doc_type":"usermanual", - "p_code":"180", - "code":"182" + "p_code":"185", + "code":"187" }, { "desc":"Cloud Eye on the cloud service platform monitors the status of ModelArts real-time services and model loads. You can obtain the monitoring metrics of each ModelArts real-", @@ -1643,8 +1688,8 @@ "title":"Viewing Monitoring Metrics", "uri":"modelarts_23_0189.html", "doc_type":"usermanual", - "p_code":"180", - "code":"183" + "p_code":"185", + "code":"188" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1653,7 +1698,7 @@ "uri":"modelarts_23_0249.html", "doc_type":"usermanual", "p_code":"", - "code":"184" + "code":"189" }, { "desc":"CTS is available on the public cloud platform. With CTS, you can record operations associated with ModelArts for later query, audit, and backtrack operations.CTS has been", @@ -1661,8 +1706,8 @@ "title":"Key Operations Recorded by CTS", "uri":"modelarts_23_0250.html", "doc_type":"usermanual", - "p_code":"184", - "code":"185" + "p_code":"189", + "code":"190" }, { "desc":"After CTS is enabled, CTS starts recording operations related to ModelArts. The CTS management console stores the last seven days of operation records. This section descr", @@ -1670,8 +1715,8 @@ "title":"Viewing Audit Logs", "uri":"modelarts_23_0251.html", "doc_type":"usermanual", - "p_code":"184", - "code":"186" + "p_code":"189", + "code":"191" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1680,7 +1725,7 @@ "uri":"modelarts_05_0000.html", "doc_type":"usermanual", "p_code":"", - "code":"187" + "code":"192" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1688,8 +1733,8 @@ "title":"General Issues", "uri":"modelarts_05_0014.html", "doc_type":"usermanual", - "p_code":"187", - "code":"188" + "p_code":"192", + "code":"193" }, { "desc":"ModelArts is a one-stop development platform for AI developers. With data preprocessing, semi-automated data labeling, distributed training, automated model building, and", @@ -1697,8 +1742,8 @@ "title":"What Is ModelArts?", "uri":"modelarts_05_0001.html", "doc_type":"usermanual", - "p_code":"188", - "code":"189" + "p_code":"193", + "code":"194" }, { "desc":"ModelArts uses Identity and Access Management (IAM) for authentication and authorization. For more information about IAM, see Identity and Access Management User Guide.Mo", @@ -1706,8 +1751,8 @@ "title":"What Are The Relationships Between ModelArts And Other Services", "uri":"modelarts_05_0003.html", "doc_type":"usermanual", - "p_code":"188", - "code":"190" + "p_code":"193", + "code":"195" }, { "desc":"Log in to the console, enter the My Credentials page, and choose Access Keys > Create Access Key.In the Create Access Key dialog box that is displayed, use the login pass", @@ -1715,8 +1760,8 @@ "title":"How Do I Obtain Access Keys?", "uri":"modelarts_05_0004.html", "doc_type":"usermanual", - "p_code":"188", - "code":"191" + "p_code":"193", + "code":"196" }, { "desc":"Before using ModelArts to develop AI models, data needs to be uploaded to an OBS bucket. You can log in to the OBS console to create an OBS bucket, create a folder, and u", @@ -1724,8 +1769,8 @@ "title":"How Do I Upload Data to OBS?", "uri":"modelarts_05_0013.html", "doc_type":"usermanual", - "p_code":"188", - "code":"192" + "p_code":"193", + "code":"197" }, { "desc":"Supported AI frameworks and versions of ModelArts vary slightly based on the development environment, training jobs, and model inference (model management and deployment)", @@ -1733,8 +1778,8 @@ "title":"Which AI Frameworks Does ModelArts Support?", "uri":"modelarts_05_0128.html", "doc_type":"usermanual", - "p_code":"188", - "code":"193" + "p_code":"193", + "code":"198" }, { "desc":"For common users, ModelArts provides the predictive analytics function of ExeML to train models based on structured data.For advanced users, ModelArts provides the notebo", @@ -1742,8 +1787,8 @@ "title":"How Do I Use ModelArts to Train Models Based on Structured Data?", "uri":"modelarts_21_0055.html", "doc_type":"usermanual", - "p_code":"188", - "code":"194" + "p_code":"193", + "code":"199" }, { "desc":"The current version supports multiple projects.Multi-projects refers to IAM projects. ModelArts supports multiple IAM projects, without requiring EPS separately.", @@ -1751,8 +1796,8 @@ "title":"Does ModelArts Support Multiple Projects?", "uri":"modelarts_21_0057.html", "doc_type":"usermanual", - "p_code":"188", - "code":"195" + "p_code":"193", + "code":"200" }, { "desc":"To view all files stored in OBS when using notebook instances or training jobs, use either of the following methods:OBS consoleLog in to OBS console using the current acc", @@ -1760,8 +1805,8 @@ "title":"How Do I View All Files in an OBS Directory on ModelArts?", "uri":"modelarts_21_0058.html", "doc_type":"usermanual", - "p_code":"188", - "code":"196" + "p_code":"193", + "code":"201" }, { "desc":"No. The current ModelArts version does not support encrypted files stored in OBS.", @@ -1769,8 +1814,8 @@ "title":"Does ModelArts Support Encrypted Files Stored in OBS?", "uri":"modelarts_21_0059.html", "doc_type":"usermanual", - "p_code":"188", - "code":"197" + "p_code":"193", + "code":"202" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1778,8 +1823,8 @@ "title":"ExeML", "uri":"modelarts_05_0015.html", "doc_type":"usermanual", - "p_code":"187", - "code":"198" + "p_code":"192", + "code":"203" }, { "desc":"ExeML is the process of automating model design, parameter tuning, and model training, compression, and deployment with the labeled data. The process is free of coding an", @@ -1787,8 +1832,8 @@ "title":"What Is ExeML?", "uri":"modelarts_05_0002.html", "doc_type":"usermanual", - "p_code":"198", - "code":"199" + "p_code":"203", + "code":"204" }, { "desc":"Image classification is an image processing method that separates different classes of targets according to the features reflected in the images. With quantitative analys", @@ -1796,8 +1841,8 @@ "title":"What Are Image Classification and Object Detection?", "uri":"modelarts_05_0018.html", "doc_type":"usermanual", - "p_code":"198", - "code":"200" + "p_code":"203", + "code":"205" }, { "desc":"The Train button turns to be available when the training images for an image classification project are classified into at least two categories, and each category contain", @@ -1805,8 +1850,8 @@ "title":"What Should I Do When the Train Button Is Unavailable After I Create an Image Classification Project and Label the Images?", "uri":"modelarts_05_0005.html", "doc_type":"usermanual", - "p_code":"198", - "code":"201" + "p_code":"203", + "code":"206" }, { "desc":"Yes. You can add multiple labels to an image.", @@ -1814,8 +1859,8 @@ "title":"Can I Add Multiple Labels to an Image for an Object Detection Project?", "uri":"modelarts_05_0006.html", "doc_type":"usermanual", - "p_code":"198", - "code":"202" + "p_code":"203", + "code":"207" }, { "desc":"Models created in ExeML are deployed as real-time services. You can add images or compile code to test the services, as well as call the APIs using the URLs.After model d", @@ -1823,8 +1868,8 @@ "title":"What Type of Service Is Deployed in ExeML?", "uri":"modelarts_05_0008.html", "doc_type":"usermanual", - "p_code":"198", - "code":"203" + "p_code":"203", + "code":"208" }, { "desc":"Images in JPG, JPEG, PNG, or BMP format are supported.", @@ -1832,8 +1877,8 @@ "title":"What Formats of Images Are Supported by Object Detection or Image Classification Projects?", "uri":"modelarts_05_0010.html", "doc_type":"usermanual", - "p_code":"198", - "code":"204" + "p_code":"203", + "code":"209" }, { "desc":"Data files cannot be stored in the root directory of an OBS bucket.The name of files in a dataset consists of letters, digits, hyphens (-), and underscores (_), and the f", @@ -1841,8 +1886,8 @@ "title":"What Are the Requirements for Training Data When You Create a Predictive Analytics Project in ExeML?", "uri":"modelarts_21_0062.html", "doc_type":"usermanual", - "p_code":"198", - "code":"205" + "p_code":"203", + "code":"210" }, { "desc":"The model cannot be downloaded. However, you can view the model or deploy the model as a real-time service on the model management page.", @@ -1850,8 +1895,8 @@ "title":"Can I Download a Model After It Is Automatically Trained?", "uri":"modelarts_21_0061.html", "doc_type":"usermanual", - "p_code":"198", - "code":"206" + "p_code":"203", + "code":"211" }, { "desc":"Each round of training generates a training version in an ExeML project. If a training result is unsatisfactory (for example, unsatisfactory about the training precision)", @@ -1859,8 +1904,8 @@ "title":"How Do I Perform Incremental Training in an ExeML Project?", "uri":"modelarts_21_0060.html", "doc_type":"usermanual", - "p_code":"198", - "code":"207" + "p_code":"203", + "code":"212" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1868,8 +1913,8 @@ "title":"Data Management", "uri":"modelarts_05_0101.html", "doc_type":"usermanual", - "p_code":"187", - "code":"208" + "p_code":"192", + "code":"213" }, { "desc":"For the data management function, there are limits on the image size when you upload images to the datasets whose labeling type is object detection or image classificatio", @@ -1877,8 +1922,8 @@ "title":"Are There Size Limits for Images to be Uploaded?", "uri":"modelarts_21_0063.html", "doc_type":"usermanual", - "p_code":"208", - "code":"209" + "p_code":"213", + "code":"214" }, { "desc":"Failed to use the manifest file of the published dataset to import data again.Data has been changed in the OBS directory of the published dataset, for example, images hav", @@ -1886,8 +1931,8 @@ "title":"Why Does Data Fail to Be Imported Using the Manifest File?", "uri":"modelarts_05_0103.html", "doc_type":"usermanual", - "p_code":"208", - "code":"210" + "p_code":"213", + "code":"215" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1895,8 +1940,8 @@ "title":"Notebook", "uri":"modelarts_05_0067.html", "doc_type":"usermanual", - "p_code":"187", - "code":"211" + "p_code":"192", + "code":"216" }, { "desc":"Log in to the ModelArts management console, and choose DevEnviron > Notebooks.In the notebook list, click Open in the Operation column of the target notebook instance to ", @@ -1904,8 +1949,8 @@ "title":"How Do I Enable the Terminal Function in DevEnviron of ModelArts?", "uri":"modelarts_05_0071.html", "doc_type":"usermanual", - "p_code":"211", - "code":"212" + "p_code":"216", + "code":"217" }, { "desc":"Multiple environments have been integrated into ModelArts Notebook. These environments contain Jupyter Notebook and Python packages, including TensorFlow, MXNet, Caffe, P", @@ -1913,8 +1958,8 @@ "title":"How Do I Install External Libraries in a Notebook Instance?", "uri":"modelarts_05_0022.html", "doc_type":"usermanual", - "p_code":"211", - "code":"213" + "p_code":"216", + "code":"218" }, { "desc":"Notebook instances in DevEnviron support the Keras engine. The Keras engine is not supported in job training and model deployment (inference).Keras is an advanced neural ", @@ -1922,8 +1967,8 @@ "title":"Is the Keras Engine Supported?", "uri":"modelarts_21_0065.html", "doc_type":"usermanual", - "p_code":"211", - "code":"214" + "p_code":"216", + "code":"219" }, { "desc":"After the training code is debugged in a notebook instance, if you need to use the training code for training jobs on ModelArts, convert the ipynb file into a Python file", @@ -1931,8 +1976,8 @@ "title":"How Do I Use Training Code in Training Jobs After Debugging the Code in a Notebook Instance?", "uri":"modelarts_21_0066.html", "doc_type":"usermanual", - "p_code":"211", - "code":"215" + "p_code":"216", + "code":"220" }, { "desc":"In the notebook instance, error message \"No Space left...\" is displayed after the pip install command is run.You are advised to run the pip install --no-cache ** command", @@ -1940,8 +1985,8 @@ "title":"What Should I Do When the System Displays an Error Message Indicating that No Space Left After I Run the pip install Command?", "uri":"modelarts_21_0067.html", "doc_type":"usermanual", - "p_code":"211", - "code":"216" + "p_code":"216", + "code":"221" }, { "desc":"In a notebook instance, you can call the ModelArts MoXing API or SDK to exchange data with OBS for uploading a file to OBS or downloading a file from OBS to the notebook ", @@ -1949,8 +1994,8 @@ "title":"How Do I Upload a File from a Notebook Instance to OBS or Download a File from OBS to a Notebook Instance?", "uri":"modelarts_05_0024.html", "doc_type":"usermanual", - "p_code":"211", - "code":"217" + "p_code":"216", + "code":"222" }, { "desc":"Small files (files smaller than 100 MB)Open a notebook instance and click Upload in the upper right corner to upload a local file to the notebook instance.Upload a small ", @@ -1958,8 +2003,8 @@ "title":"How Do I Upload Local Files to a Notebook Instance?", "uri":"modelarts_21_0068.html", "doc_type":"usermanual", - "p_code":"211", - "code":"218" + "p_code":"216", + "code":"223" }, { "desc":"If you use OBS to store the notebook instance, after you click upload, the data is directly uploaded to the target OBS path, that is, the OBS path specified when the note", @@ -1967,8 +2012,8 @@ "title":"Where Will the Data Be Uploaded to?", "uri":"modelarts_05_0045.html", "doc_type":"usermanual", - "p_code":"211", - "code":"219" + "p_code":"216", + "code":"224" }, { "desc":"The following uses the TensorFlow-1.8 engine as an example. The operations on other engines are similar. You only need to replace the engine name and version number in th", @@ -1976,8 +2021,8 @@ "title":"Should I Access the Python Environment Same as the Notebook Kernel of the Current Instance in the Terminal?", "uri":"modelarts_21_0069.html", "doc_type":"usermanual", - "p_code":"211", - "code":"220" + "p_code":"216", + "code":"225" }, { "desc":"If a notebook instance fails to execute code, you can locate and rectify the fault based on the following scenarios:If the execution of a cell is suspended or lasts for a", @@ -1985,8 +2030,8 @@ "title":"What Do I Do If a Notebook Instance Fails to Execute Code?", "uri":"modelarts_21_0070.html", "doc_type":"usermanual", - "p_code":"211", - "code":"221" + "p_code":"216", + "code":"226" }, { "desc":"Currently, Terminal in ModelArts DevEnviron does not support apt-get. You can use a custom image to support it.", @@ -1994,8 +2039,8 @@ "title":"Does ModelArts DevEnviron Support apt-get?", "uri":"modelarts_21_0071.html", "doc_type":"usermanual", - "p_code":"211", - "code":"222" + "p_code":"216", + "code":"227" }, { "desc":"/cache is a temporary directory and will not be saved. After an instance using OBS storage is stopped, data in the ~work directory will be deleted. After a notebook insta", @@ -2003,8 +2048,8 @@ "title":"Do Files in /cache Still Exist After a Notebook Instance is Stopped or Restarted? How Do I Avoid a Restart?", "uri":"modelarts_05_0080.html", "doc_type":"usermanual", - "p_code":"211", - "code":"223" + "p_code":"216", + "code":"228" }, { "desc":"Log in to the ModelArts management console, and choose DevEnviron > Notebooks.In the Operation column of the target notebook instance in the notebook list, click Open to ", @@ -2012,8 +2057,8 @@ "title":"Where Is Data Stored After the Sync OBS Function Is Used?", "uri":"modelarts_05_0081.html", "doc_type":"usermanual", - "p_code":"211", - "code":"224" + "p_code":"216", + "code":"229" }, { "desc":"If you select GPU when creating a notebook instance, perform the following operations to view GPU usage:Log in to the ModelArts management console, and choose DevEnviron ", @@ -2021,8 +2066,8 @@ "title":"How Do I View GPU Usage on the Notebook?", "uri":"modelarts_21_0072.html", "doc_type":"usermanual", - "p_code":"211", - "code":"225" + "p_code":"216", + "code":"230" }, { "desc":"When creating a notebook instance, select the target Python development environment. Python2 and Python3 are supported, corresponding to Python 2.7 and Python 3.6, respec", @@ -2030,8 +2075,8 @@ "title":"What Python Development Environments Does Notebook Support?", "uri":"modelarts_21_0073.html", "doc_type":"usermanual", - "p_code":"211", - "code":"226" + "p_code":"216", + "code":"231" }, { "desc":"The python2 environment of ModelArts supports Caffe, but the python3 environment does not support it.", @@ -2039,8 +2084,8 @@ "title":"Does ModelArts Support the Caffe Engine?", "uri":"modelarts_21_0074.html", "doc_type":"usermanual", - "p_code":"211", - "code":"227" + "p_code":"216", + "code":"232" }, { "desc":"For security purposes, notebook instances do not support sudo privilege escalation.", @@ -2048,8 +2093,8 @@ "title":"Is sudo Privilege Escalation Supported?", "uri":"modelarts_21_0075.html", "doc_type":"usermanual", - "p_code":"211", - "code":"228" + "p_code":"216", + "code":"233" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -2057,8 +2102,8 @@ "title":"Training Jobs", "uri":"modelarts_05_0030.html", "doc_type":"usermanual", - "p_code":"187", - "code":"229" + "p_code":"192", + "code":"234" }, { "desc":"The code directory for creating a training job has limits on the size and number of files.Delete the files except the code from the code directory or save the files in ot", @@ -2066,8 +2111,8 @@ "title":"What Can I Do If the Message \"Object directory size/quantity exceeds the limit\" Is Displayed When I Create a Training Job?", "uri":"modelarts_05_0031.html", "doc_type":"usermanual", - "p_code":"229", - "code":"230" + "p_code":"234", + "code":"235" }, { "desc":"When you use ModelArts, your data is stored in the OBS bucket. The data has a corresponding OBS path, for example, bucket_name/dir/image.jpg. ModelArts training jobs run ", @@ -2075,8 +2120,8 @@ "title":"What Can I Do If \"No such file or directory\" Is Displayed In the Training Job Log?", "uri":"modelarts_05_0032.html", "doc_type":"usermanual", - "p_code":"229", - "code":"231" + "p_code":"234", + "code":"236" }, { "desc":"When a model references a dependency package, select a frequently-used framework to create training jobs. In addition, place the required file or installation package in ", @@ -2084,8 +2129,8 @@ "title":"How Do I Create a Training Job When a Dependency Package Is Referenced in a Model?", "uri":"modelarts_05_0063.html", "doc_type":"usermanual", - "p_code":"229", - "code":"232" + "p_code":"234", + "code":"237" }, { "desc":"Pay attention to the following when setting training parameters:When setting running parameters for creating a training job, you only need to set the corresponding parame", @@ -2093,8 +2138,8 @@ "title":"What Should I Know When Setting Training Parameters?", "uri":"modelarts_21_0077.html", "doc_type":"usermanual", - "p_code":"229", - "code":"233" + "p_code":"234", + "code":"238" }, { "desc":"In the left navigation pane of the ModelArts management console, choose Training Management > Training Jobs to go to the Training Jobs page. In the training job list, cli", @@ -2102,8 +2147,8 @@ "title":"How Do I Check Resource Usage of a Training Job?", "uri":"modelarts_21_0078.html", "doc_type":"usermanual", - "p_code":"229", - "code":"234" + "p_code":"234", + "code":"239" }, { "desc":"When creating a training job, you can select CPU, GPUresources based on the size of the training job.ModelArts mounts the disk to the /cache directory. You can use this d", @@ -2111,8 +2156,8 @@ "title":"What Are Sizes of the /cache Directories for Different Resource Specifications in the Training Environment?", "uri":"modelarts_05_0090.html", "doc_type":"usermanual", - "p_code":"229", - "code":"235" + "p_code":"234", + "code":"240" }, { "desc":"In the script of the training job boot file, run the following commands to obtain the sizes of the to-be-copied and copied folders. Then determine whether folder copy is ", @@ -2120,8 +2165,8 @@ "title":"How Do I Check Whether Folder Copy Is Complete During Job Training?", "uri":"modelarts_21_0079.html", "doc_type":"usermanual", - "p_code":"229", - "code":"236" + "p_code":"234", + "code":"241" }, { "desc":"Training job parameters can be automatically generated in the background or manually entered by users. Perform the following operations to obtain training job parameters:", @@ -2129,8 +2174,8 @@ "title":"How Do I Obtain Training Job Parameters from the Boot File of the Training Job?", "uri":"modelarts_21_0080.html", "doc_type":"usermanual", - "p_code":"229", - "code":"237" + "p_code":"234", + "code":"242" }, { "desc":"ModelArts does not support access to the background of a training job.", @@ -2138,8 +2183,8 @@ "title":"How Do I Access the Background of a Training Job?", "uri":"modelarts_21_0081.html", "doc_type":"usermanual", - "p_code":"229", - "code":"238" + "p_code":"234", + "code":"243" }, { "desc":"Storage directories of ModelArts training jobs do not affect each other. Environments are isolated from each other, and data of other jobs cannot be viewed.", @@ -2147,8 +2192,8 @@ "title":"Is There Any Conflict When Models of Two Training Jobs Are Saved in the Same Directory of a Container?", "uri":"modelarts_21_0082.html", "doc_type":"usermanual", - "p_code":"229", - "code":"239" + "p_code":"234", + "code":"244" }, { "desc":"In a training job, only three valid digits are retained in a training output log. When the value of loss is too small, the value is displayed as 0.000. Log content is as ", @@ -2156,8 +2201,8 @@ "title":"Only Three Valid Digits Are Retained in a Training Output Log. Can the Value of loss Be Changed?", "uri":"modelarts_21_0083.html", "doc_type":"usermanual", - "p_code":"229", - "code":"240" + "p_code":"234", + "code":"245" }, { "desc":"If you cannot access the corresponding folder by using os.system('cd xxx') in the boot script of the training job, you are advised to use the following method:", @@ -2165,8 +2210,8 @@ "title":"Why Can't I Use os.system ('cd xxx') to Access the Corresponding Folder During Job Training?", "uri":"modelarts_21_0084.html", "doc_type":"usermanual", - "p_code":"229", - "code":"241" + "p_code":"234", + "code":"246" }, { "desc":"ModelArts enables you to invoke a shell script, and you can use Python to invoke .sh. The procedure is as follows:Upload the .sh script to an OBS bucket. For example, upl", @@ -2174,8 +2219,8 @@ "title":"How Do I Invoke a Shell Script in a Training Job to Execute the .sh File?", "uri":"modelarts_21_0085.html", "doc_type":"usermanual", - "p_code":"229", - "code":"242" + "p_code":"234", + "code":"247" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -2183,8 +2228,8 @@ "title":"Model Management", "uri":"modelarts_05_0016.html", "doc_type":"usermanual", - "p_code":"187", - "code":"243" + "p_code":"192", + "code":"248" }, { "desc":"ModelArts does not support the import of models in .h5 format. You can convert the models in .h5 format of Keras to the TensorFlow format and then import the models to Mo", @@ -2192,8 +2237,8 @@ "title":"How Do I Import the .h5 Model of Keras to ModelArts?", "uri":"modelarts_21_0086.html", "doc_type":"usermanual", - "p_code":"243", - "code":"244" + "p_code":"248", + "code":"249" }, { "desc":"ModelArts allows you to upload local models to OBS or import models stored in OBS directly into ModelArts.For details about how to import a model from OBS, see Importing ", @@ -2201,8 +2246,8 @@ "title":"How Do I Import a Model Downloaded from OBS to ModelArts?", "uri":"modelarts_05_0124.html", "doc_type":"usermanual", - "p_code":"243", - "code":"245" + "p_code":"248", + "code":"250" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -2210,8 +2255,8 @@ "title":"Service Deployment", "uri":"modelarts_05_0017.html", "doc_type":"usermanual", - "p_code":"187", - "code":"246" + "p_code":"192", + "code":"251" }, { "desc":"Currently, models can only be deployed as real-time services and batch services.", @@ -2219,8 +2264,8 @@ "title":"What Types of Services Can Models Be Deployed as on ModelArts?", "uri":"modelarts_05_0012.html", "doc_type":"usermanual", - "p_code":"246", - "code":"247" + "p_code":"251", + "code":"252" }, { "desc":"Before importing a model, you need to place the corresponding inference code and configuration file in the model folder. When encoding with Python, you are advised to use", @@ -2228,8 +2273,8 @@ "title":"What Should I Do If a Conflict Occurs When Deploying a Model As a Real-Time Service?", "uri":"modelarts_05_0100.html", "doc_type":"usermanual", - "p_code":"246", - "code":"248" + "p_code":"251", + "code":"253" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -2238,6 +2283,6 @@ "uri":"modelarts_04_0099.html", "doc_type":"usermanual", "p_code":"", - "code":"249" + "code":"254" } ] \ No newline at end of file diff --git a/docs/modelarts/umn/en-us_image_0000001454866081.png b/docs/modelarts/umn/en-us_image_0000001454866081.png new file mode 100644 index 00000000..42593ed1 Binary files /dev/null and b/docs/modelarts/umn/en-us_image_0000001454866081.png differ diff --git a/docs/modelarts/umn/modelarts_04_0099.html b/docs/modelarts/umn/modelarts_04_0099.html index 3362028c..ce33f14f 100644 --- a/docs/modelarts/umn/modelarts_04_0099.html +++ b/docs/modelarts/umn/modelarts_04_0099.html @@ -8,7 +8,12 @@ -
2022-10-28
+203-06-19
+2022-10-28
To obtain higher computing power, you can deploy the models created on ModelArts or a local PC on the Ascend chip. In this case, you need to compress or convert the models to the required formats before deploying them.
+ModelArts supports model conversion, allowing you to convert a model to a required format before deploying the model on a chip with higher computing power and performance.
+Model conversion applies to the following scenarios:
+Parameter + |
+Description + |
+
---|---|
Name + |
+Name of a model conversion task + |
+
Description + |
+Description of a model conversion task + |
+
Conversion Template + |
+ModelArts provides various templates to define model conversion and the parameters required during the conversion. +Conversion Templates details the supported model conversion templates. You can select a template from the template list. Alternatively, you can enter a keyword in the search box to search for a template, or select a template based on the chip type, framework type, or model file format. +
|
+
Conversion Input Path + |
+Path to the model to be converted. The path must be an OBS path and comply with the ModelArts specifications. For details about the specifications, see Model Input Path Specifications. + |
+
Conversion Output Path + |
+Path to the converted model. The path must comply with the ModelArts specifications. For details about the specifications, see Model Output Path Description. + |
+
Advanced Settings + |
+ModelArts allows you to configure advanced settings for different conversion templates, for example, the precision. +Different conversion templates support different advanced settings. For details about the parameters supported by each template, see Conversion Templates. + |
+
After the task is created, the system automatically switches to the Compression/Conversion page. The created conversion task is displayed on the page and is in the Initializing status. The conversion task takes several minutes to complete. When the task status changes to Successful, the task is complete and the model has been converted.
+If the task status changes to Failed, click the task name to go to the task details page, view the log information, adjust task parameters based on the log information, and create another conversion task.
+You can delete unnecessary conversion tasks. However, tasks in the Running or Initializing status cannot be deleted.
+Deleted tasks cannot be recovered. Exercise caution when performing this operation.
+During model conversion, the model input directory must comply with certain specifications. This section describes how to upload your model package to OBS.
+The requirements for converting the models run on the Ascend chip are as follows:
+| +|---xxxx.pb (Mandatory) Model network file. Only one model network file can exist in the input path. The model must be in frozen_graph or saved_model format. +|---insert_op_conf.cfg (Optional) Insertion operator configuration file. Only one insertion operator configuration file can exist in the input path. +|---plugin (Optional) Custom operator directory. The input directory can contain only one plugin folder. Only custom operators developed based on Tensor Engine (TE) are supported.+
saved_model format
+| +|---saved_model.pb (Mandatory) Model network file. Only one model network file can exist in the input path. The model must be in frozen_graph or saved_model format. +|---variables (Mandatory) Fixed subdirectory name, including the model weight deviation. + |---variables.index Mandatory + |---variables.data-00000-of-00001 Mandatory +|---insert_op_conf.cfg (Optional) Insertion operator configuration file. Only one insertion operator configuration file can exist in the input path. +|---plugin (Optional) Custom operator directory. The input directory can contain only one plugin folder. Only custom operators developed based on Tensor Engine (TE) are supported.+
The following describes the output path of the model run on the Ascend chip after conversion:
+| +|---xxxx.om Converted model to run on the Ascend chip. The model file name extension is .om. +|---job_log.txt Conversion log file+
ModelArts provides the following conversion templates based on different AI frameworks:
+ +Convert the model trained by the TensorFlow framework and saved in frozen_graph format. The converted model can run on the Ascend. The custom operators (TBE operators) developed based on Tensor Based Engine (TBE) can be used for conversion.
+ +Parameter + |
+Description + |
+
---|---|
input_shape + |
+Enter the shape of the input data of the model, for example, input_name1:n1,c1,h1,w1;input_name2:n2,c2,h2,w2. input_name must be the node name in the network model before model conversion. This parameter is mandatory when the model has dynamic shape input. For example, in input_name1:? ,h,w,c, the question mark (?) indicates the batch size, that is, the number of images processed at a time. It is used to convert the original model with a dynamic shape into an offline model with a fixed shape. The batch feature is not supported. The batch value of the input_shape can only be 1. During the conversion, the system parses the input model to obtain the input tensor and prints it in the log. If you do not know the input tensor of the used model, refer to the parsing result in the log. + |
+
input_format + |
+NCHW and NHWC are supported. The default format is NHWC. For the TensorFlow framework, the default value is NHWC. To use the NCHW format, you need to specify NCHW. For the Caffe framework, only the NCHW format is supported. + |
+
out_nodes + |
+Specifies the output node, for example, node_name1:0;node_name1:1;node_name2:0. node_name must be the node name in the network model before model conversion. The digit after each colon (:) indicates the sequence number of the output. For example, node_name1:0 indicates the 0th output of node_name1. If the output node is not specified, the output of the last operator layer serves as the model output by default. To check the parameters of a specific operator layer, specify the operator layer by using this parameter. During the conversion, the system parses the input model to obtain the output node and prints it in the log. If you do not know the input tensor of the used model, refer to the parsing result in the log. + |
+
net_format + |
+Specifies the preferred data format for network operators. Possible values are ND (N cannot be more than 4) and 5D. This parameter only takes effect if the input data of operators on the network supports both ND and 5D formats. ND indicates that operators in the model are converted into the NCHW format. 5D indicates that . 5D is the default value. + |
+
fp16_high_prec + |
+Specifies whether to generate a high-precision FP16 Davinci model. 0 is the default value, indicating that a common FP16 Da Vinci model with better inference performance is generated. The value 1 indicates that a high-precision FP16 Da Vinci model with better inference precision is generated. High-precision models support only Caffe operators (Convolution, Pooling, and FullConnection) and TensorFlow operators (tf.nn.conv2d and tf.nn.max_poo). + |
+
output_type + |
+FP32 is the default value and is recommended for classification and detection networks. For image super-resolution networks, UINT8 is recommended for better inference performance. + |
+
enable_l2dynamic + |
+L2 dynamic optimization switch. This parameter may affect the inference performance of the network model. If the performance does not meet the requirement, you can disable this function to verify the impact on the performance. true is the default value, indicating that L2 dynamic optimization is enabled. false indicates that L2 dynamic optimization is disabled. + |
+
Convert the model trained by the TensorFlow framework and saved in saved_model format. The converted model can run on the Ascend. The custom operators (TE operators) developed based on TE can be used for conversion.
+ +Parameter + |
+Description + |
+
---|---|
input_shape + |
+Enter the shape of the input data of the model, for example, input_name1:n1,c1,h1,w1;input_name2:n2,c2,h2,w2. input_name must be the node name in the network model before model conversion. This parameter is mandatory when the model has dynamic shape input. For example, in input_name1:? ,h,w,c, the question mark (?) indicates the batch size, that is, the number of images processed at a time. It is used to convert the original model with a dynamic shape into an offline model with a fixed shape. The batch feature is not supported. The batch value of the input_shape can only be 1. During the conversion, the system parses the input model to obtain the input tensor and prints it in the log. If you do not know the input tensor of the used model, refer to the parsing result in the log. + |
+
input_format + |
+NCHW and NHWC are supported. The default format is NHWC. For the TensorFlow framework, the default value is NHWC. To use the NCHW format, you need to specify NCHW. For the Caffe framework, only the NCHW format is supported. + |
+
out_nodes + |
+Specifies the output node, for example, node_name1:0;node_name1:1;node_name2:0. node_name must be the node name in the network model before model conversion. The digit after each colon (:) indicates the sequence number of the output. For example, node_name1:0 indicates the 0th output of node_name1. If the output node is not specified, the output of the last operator layer serves as the model output by default. To check the parameters of a specific operator layer, specify the operator layer by using this parameter. During the conversion, the system parses the input model to obtain the output node and prints it in the log. If you do not know the input tensor of the used model, refer to the parsing result in the log. + |
+
net_format + |
+Specifies the preferred data format for network operators. Possible values are ND (N cannot be more than 4) and 5D. This parameter only takes effect if the input data of operators on the network supports both ND and 5D formats. ND indicates that operators in the model are converted into the NCHW format. 5D indicates that . 5D is the default value. + |
+
fp16_high_prec + |
+Specifies whether to generate a high-precision FP16 Davinci model. 0 is the default value, indicating that a common FP16 Da Vinci model with better inference performance is generated. The value 1 indicates that a high-precision FP16 Da Vinci model with better inference precision is generated. High-precision models support only Caffe operators (Convolution, Pooling, and FullConnection) and TensorFlow operators (tf.nn.conv2d and tf.nn.max_poo). + |
+
output_type + |
+FP32 is the default value and is recommended for classification and detection networks. For image super-resolution networks, UINT8 is recommended for better inference performance. + |
+
enable_l2dynamic + |
+L2 dynamic optimization switch. This parameter may affect the inference performance of the network model. If the performance does not meet the requirement, you can disable this function to verify the impact on the performance. true is the default value, indicating that L2 dynamic optimization is enabled. false indicates that L2 dynamic optimization is disabled. + |
+