This API is used to obtain the details about a specified training job based on the job ID.
GET /v1/{project_id}/training-jobs/{job_id}/versions/{version_id}
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
project_id |
Yes |
String |
Project ID. For details about how to obtain a project ID, see Obtaining a Project ID and Name. |
job_id |
Yes |
Long |
ID of a training job |
version_id |
Yes |
Long |
Version ID of a training job |
None
Parameter |
Type |
Description |
---|---|---|
is_success |
Boolean |
Whether the request is successful |
job_id |
Long |
ID of a training job |
job_name |
String |
Name of a training job |
job_desc |
String |
Description of a training job |
version_id |
Long |
Version ID of a training job |
version_name |
String |
Version name of a training job |
pre_version_id |
Long |
Name of the previous version of a training job |
engine_type |
Integer |
Engine type of a training job. The mapping between engine_type and engine_name is as follows: engine_type: 13, engine_name: Ascend-Powered-Engine |
engine_name |
String |
Name of the engine selected for a training job. Currently, the following engines are supported: Ascend-Powered-Engine |
engine_id |
Long |
ID of the engine selected for a training job |
engine_version |
String |
Version of the engine selected for a training job |
status |
Integer |
Status of a training job. For details about the job statuses, see Job Statuses. |
app_url |
String |
Code directory of a training job |
boot_file_url |
String |
Boot file of a training job |
create_time |
Long |
Time when a training job is created |
parameter |
Array<Object> |
Running parameters of a training job. This parameter is a container environment variable when a training job uses a custom image. For details, see Table 3. |
duration |
Long |
Training job running duration, in milliseconds |
spec_id |
Long |
ID of the resource specifications selected for a training job |
core |
String |
Number of cores of the resource specifications |
cpu |
String |
CPU memory of the resource specifications |
gpu_num |
Integer |
Number of GPUs of the resource specifications |
gpu_type |
String |
GPU type of the resource specifications |
worker_server_num |
Integer |
Number of workers in a training job |
data_url |
String |
Dataset of a training job |
train_url |
String |
OBS path of the training job output file |
log_url |
String |
OBS URL of the logs of a training job. By default, this parameter is left blank. Example value: /usr/train/ |
dataset_version_id |
String |
Dataset version ID of a training job |
dataset_id |
String |
Dataset ID of a training job |
data_source |
Array<Object> |
Dataset of a training job. For details, see Table 4. |
model_id |
Long |
Model ID of a training job |
model_metric_list |
String |
Model metrics of a training job. For details, see Table 5. |
system_metric_list |
Object |
System monitoring metrics of a training job. For details, see Table 6. |
user_image_url |
String |
SWR URL of a custom image used by a training job |
user_command |
String |
Boot command used to start the container of a custom image of a training job |
resource_id |
String |
Charged resource ID of a training job |
dataset_name |
String |
Dataset of a training job |
spec_code |
String |
Resource specifications selected for a training job |
start_time |
Long |
Training start time |
volumes |
Array<Object> |
Storage volume that can be used by a training job. For details, see Table 11. |
dataset_version_name |
String |
Dataset of a training job |
pool_name |
String |
Name of a resource pool |
pool_id |
String |
ID of a resource pool |
nas_mount_path |
String |
Local mount path of SFS Turbo (NAS). Example value: /home/work/nas |
nas_share_addr |
String |
Shared path of SFS Turbo (NAS). Example value: 192.168.8.150:/ |
nas_type |
String |
Only NFS is supported. Example value: nfs |
Parameter |
Type |
Description |
---|---|---|
label |
String |
Parameter name |
value |
String |
Parameter value |
Parameter |
Type |
Description |
---|---|---|
dataset_id |
String |
Dataset ID of a training job |
dataset_version |
String |
Dataset version ID of a training job |
type |
String |
Dataset type
|
data_url |
String |
OBS bucket path |
Parameter |
Type |
Description |
---|---|---|
metric |
JSON Array |
Validation metrics of a classification of a training job. For details, see Table 7. |
total_metric |
JSON |
Overall validation parameters of a training job. For details, see Table 9. |
Parameter |
Type |
Description |
---|---|---|
cpuUsage |
Array |
CPU usage of a training job |
memUsage |
Array |
Memory usage of a training job |
gpuUtil |
Array |
GPU usage of a training job |
Parameter |
Type |
Description |
---|---|---|
metric_values |
JSON |
Validation metrics of a classification of a training job. For details, see Table 8. |
reserved_data |
JSON |
Reserved parameter |
metric_meta |
JSON |
Classification of a training job, including the classification ID and name |
Parameter |
Type |
Description |
---|---|---|
recall |
Float |
Recall of a classification of a training job |
precision |
Float |
Precision of a classification of a training job |
accuracy |
Float |
Accuracy of a classification of a training job |
Parameter |
Type |
Description |
---|---|---|
total_metric_meta |
JSON |
Reserved parameter |
total_reserved_data |
JSON |
Reserved parameter |
total_metric_values |
JSON |
Overall validation metrics of a training job. For details, see Table 10. |
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
nfs |
No |
Object |
Storage volume of the shared file system type. Only the training jobs running in the resource pool with a shared file system network connected support such storage volumes. For details, see Table 6. |
host_path |
No |
Object |
Storage volume of the host file system type. Only training jobs running in a dedicated resource pool support such storage volumes. For details, see Table 7. |
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
id |
Yes |
String |
ID of an SFS Turbo file system |
src_path |
Yes |
String |
Path to an SFS Turbo file system |
dest_path |
Yes |
String |
Local path to a training job |
read_only |
No |
Boolean |
Whether dest_path is read-only. The default value is false.
|
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
src_path |
Yes |
String |
Local path to a host |
dest_path |
Yes |
String |
Local path to a training job |
read_only |
No |
Boolean |
Whether dest_path is read-only. The default value is false.
|
The following shows how to obtain the details about the job whose job_id is 10 and version_id is 10.
GET https://endpoint/v1/{project_id}/training-jobs/10/versions/10
{ "is_success": true, "job_id": 10, "job_name": "TestModelArtsJob", "job_desc": "TestModelArtsJob desc", "version_id": 10, "version_name": "jobVersion", "pre_version_id": 5, "engine_type": 13, "engine_name": "Ascend-Powered-Engine", "engine_id": 1, "engine_version": "TensorFlow-1.15.0", "status": 10, "app_url": "/usr/app/", "boot_file_url": "/usr/app/boot.py", "create_time": 1524189990635, "parameter": [ { "label": "learning_rate", "value": 0.01 } ], "duration": 532003, "spec_id": 1, "core": 2, "cpu": 8, "gpu_num": 2, "gpu_type": "P100", "worker_server_num": 1, "data_url": "/usr/data/", "train_url": "/usr/train/", "log_url": "/usr/log/", "dataset_version_id": "2ff0d6ba-c480-45ae-be41-09a8369bfc90", "dataset_id": "38277e62-9e59-48f4-8d89-c8cf41622c24", "data_source": [ { "type": "obs", "data_url": "/qianjiajun-test/minst/data/" } ], "user_image_url": "100.125.5.235:20202/jobmng/custom-cpu-base:1.0", "user_command": "bash -x /home/work/run_train.sh python /home/work/user-job-dir/app/mnist/mnist_softmax.py --data_url /home/work/user-job-dir/app/mnist_data", "model_id": 1, "model_metric_list": "{\"metric\":[{\"metric_values\":{\"recall\":0.005833,\"precision\":0.000178,\"accuracy\":0.000937},\"reserved_data\":{},\"metric_meta\":{\"class_name\":0,\"class_id\":0}}],\"total_metric\":{\"total_metric_meta\":{},\"total_reserved_data\":{},\"total_metric_values\":{\"recall\":0.005833,\"id\":0,\"precision\":0.000178,\"accuracy\":0.000937}}}", "system_metric_list": { "cpuUsage": [ "0", "3.10", "5.76", "0", "0", "0", "0" ], "memUsage": [ "0", "0.77", "2.09", "0", "0", "0", "0" ], "gpuUtil": [ "0", "0.25", "0.88", "0", "0", "0", "0" ] }, "dataset_name": "dataset-test", "dataset_version_name": "dataset-version-test", "spec_code": , "start_time": 1563172362000, "volumes": [ { "nfs": { "id": "43b37236-9afa-4855-8174-32254b9562e7", "src_path": "192.168.8.150:/", "dest_path": "/home/work/nas", "read_only": false } }, { "host_path": { "src_path": "/root/work", "dest_path": "/home/mind", "read_only": false } } ], "pool_id": "pool9928813f", "pool_name": "p100", "nas_mount_path": "/home/work/nas", "nas_share_addr": "192.168.8.150:/", "nas_type": "nfs" }
{ "is_success": false, "error_message": "Error string", "error_code": "ModelArts.0105" }
For details about the status code, see Status Code.