The differences between the new version and the old version lie in:
The new version reorganizes the algorithms to help you find them more easily. Existing training jobs are not affected.
In the old version, you are required to configure data input and output as follows:
# Parse CLI parameters. import argparse parser = argparse.ArgumentParser(description='MindSpore Lenet Example') parser.add_argument('--data_url', type=str, default="./Data", help='path where the dataset is saved') parser.add_argument('--train_url', type=str, default="./Model", help='if is test, must provide\ path where the trained ckpt file') args = parser.parse_args() ... # Download data to your local container. In the code, local_data_path specifies the training input path. mox.file.copy_parallel(args.data_url, local_data_path) ... # Upload the local container data to the OBS path. mox.file.copy_parallel(local_output_path, args.train_url)
In the new version, you only need to configure training input and output. In the code, arg.data_url and arg.train_url are used as local paths. For details, see Developing a Custom Script.
# Parse CLI parameters. import argparse parser = argparse.ArgumentParser(description='MindSpore Lenet Example') parser.add_argument('--data_url', type=str, default="./Data", help='path where the dataset is saved') parser.add_argument('--train_url', type=str, default="./Model", help='if is test, must provide\ path where the trained ckpt file') args = parser.parse_args() ... # The downloaded code does not need to be set. Use data_url and train_url for data training and output. # Download data to your local container. In the code, local_data_path specifies the training input path. #mox.file.copy_parallel(args.data_url, local_data_path) ... # Upload the local container data to the OBS path. #mox.file.copy_parallel(local_output_path, args.train_url)