In ModelArts notebook, you do not need to enter authentication parameters for session authentication. For details about session authentication of other development environments, see Session Authentication.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | from modelarts.session import Session from modelarts.estimator import Estimator session = Session() estimator = Estimator( modelarts_session=session, framework_type='PyTorch', # AI engine name framework_version='PyTorch-1.0.0-python3.6', # AI engine version code_dir='/bucket/src/', # Training script directory boot_file='/bucket/src/pytorch_sentiment.py', # Training boot script directory log_url='/bucket/log/', # Training log directory hyperparameters=[ {"label":"classes", "value": "10"}, {"label":"lr", "value": "0.001"} ], output_path='/bucket/output/', # Training output directory train_instance_type='modelarts.vm.gpu.p100', # Training environment flavor train_instance_count=1) # Number of training nodes update_info = estimator.update_job_configs(config_name='my_job_config', inputs='/bucket/dataset/', config_desc='update') |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | from modelarts.session import Session from modelarts.estimator import Estimator session = Session() estimator = Estimator( modelarts_session=session, framework_type='PyTorch', # AI engine name framework_version='PyTorch-1.0.0-python3.6', # AI engine version code_dir='/bucket/src/', # Training script directory boot_file='/bucket/src/pytorch_sentiment.py', # Training boot script directory log_url='/bucket/log/', # Training log directory hyperparameters=[ {"label":"classes", "value": "10"}, {"label":"lr", "value": "0.001"} ], output_path='/bucket/output/', # Training output directory train_instance_type='modelarts.vm.gpu.p100', # Training environment flavor train_instance_count=1) # Number of training nodes update_info = estimator.update_job_configs(config_name='my_job_config', dataset_id='4AZNvFkN7KYr5EdhFkH', dataset_version_id='UOF9BIeSGArwVt0oI6T', config_desc='update') |
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
modelarts_session |
Yes |
Object |
Session object. For details about the initialization method, see Session Authentication. |
train_instance_count |
Yes |
Long |
Number of workers in a training job |
code_dir |
No |
String |
Code directory of a training job, for example, /bucket/src/. Leave this parameter blank when model_name is set. |
boot_file |
No |
String |
Boot file of a training job, which needs to be stored in the code directory. For example, /bucket/src/boot.py. Leave this parameter blank when model_name is set. |
model_name |
No |
Long |
Name of the built-in algorithm used by a training job. If you have configured model_name, you do not need to configure app_url, boot_file_url, framework_type, and framework_version. |
output_path |
Yes |
String |
Output path of a training job |
hyperparameters |
No |
JSON Array |
Running parameters of a training job. It is a collection of label-value pairs. This parameter is a container environment variable when a job uses a custom image. |
log_url |
No |
String |
OBS URL of the logs of a training job. By default, this parameter is left blank. Example value: /usr/log/ |
train_instance_type |
Yes |
Long |
Resource flavor selected for a training job. If you choose to train on the training platform, obtain the value by calling the API described in Obtaining Resource Flavors. |
framework_type |
No |
String |
Engine selected for a training job. Obtain the value by calling the API described in Obtaining Engine Types. Leave this parameter blank when model_name is set. |
framework_version |
No |
String |
Engine version selected for a training job. Obtain the value by calling the API described in Obtaining Engine Types. Leave this parameter blank when model_name is set. |
job_description |
No |
String |
Description of a training job |
user_image_url |
No |
String |
SWR URL of the custom image used by a training job. Example value: 100.125.5.235:20202/jobmng/custom-cpu-base:1.0 |
user_command |
No |
String |
Boot command used to start the container of the custom image of a training job. The format is bash /home/work/run_train.sh python /home/work/user-job-dir/app/train.py {python_file_parameter}. |
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
config_name |
Yes |
String |
Name of a training job parameter configuration. The value must contain 1 to 20 characters consisting of only digits, letters, underscores (_), and hyphens (-). By default, if this parameter is left blank, the value is dynamically generated by date. |
config_desc |
No |
String |
Description of a training job parameter configuration. The value must contain 0 to 256 characters. By default, this parameter is left blank. |
inputs |
No |
String |
OBS storage path of a training job |
dataset_id |
No |
String |
Dataset ID of a training job. This parameter must be used together with dataset_version_id, but cannot be used together with inputs. |
dataset_version_id |
No |
String |
Dataset version ID of a training job. This parameter must be used together with dataset_id, but cannot be used together with inputs. |
data_source |
No |
JSON Array |
Dataset of a training job. This parameter cannot be used together with inputs, dataset_id, or dataset_version_id. |
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
dataset_id |
No |
String |
Dataset ID of a training job |
dataset_version |
No |
String |
Dataset version ID of a training job |
type |
Yes |
String |
Dataset type. The value can be obs or dataset. |
data_url |
No |
String |
OBS bucket path. This parameter cannot be used together with dataset_id or dataset_version. |
Parameter |
Type |
Description |
---|---|---|
error_msg |
String |
Error message when the API call fails. This parameter is not included when the API call succeeds. |
error_code |
String |
Error code when the API fails to be called. For details, see Error Codes in ModelArts API Reference. This parameter is not included when the API call succeeds. |
is_success |
Boolean |
Whether the API call succeeds |