Redis supports only enhanced datasource connections.
An enhanced datasource connection has been created on the DLI management console and bound to a queue in packages.
Hard-coded or plaintext passwords pose significant security risks. To ensure security, encrypt your passwords, store them in configuration files or environment variables, and decrypt them when needed.
1 2 3 | from __future__ import print_function from pyspark.sql.types import StructType, StructField, IntegerType, StringType from pyspark.sql import SparkSession |
1 | sparkSession = SparkSession.builder.appName("datasource-redis").getOrCreate() |
1 2 3 4 | host = "192.168.4.199" port = "6379" table = "person" auth = "@@@@@@" |
1 2 3 4 5 | dataList = sparkSession.sparkContext.parallelize([(1, "Katie", 19),(2,"Tom",20)]) schema = StructType([StructField("id", IntegerType(), False), StructField("name", StringType(), False), StructField("age", IntegerType(), False)]) dataFrame = sparkSession.createDataFrame(dataList, schema) |
1 2 | jdbcDF = sparkSession.createDataFrame([(3,"Jack", 23)]) dataFrame = jdbcDF.withColumnRenamed("_1", "id").withColumnRenamed("_2", "name").withColumnRenamed("_3", "age") |
1 2 3 4 5 6 7 8 | dataFrame.write .format("redis")\ .option("host", host)\ .option("port", port)\ .option("table", table)\ .option("password", auth)\ .mode("Overwrite")\ .save() |
1 | sparkSession.read.format("redis").option("host", host).option("port", port).option("table", table).option("password", auth).load().show() |
sparkSession.sql( "CREATE TEMPORARY VIEW person (name STRING, age INT) USING org.apache.spark.sql.redis OPTIONS ( 'host' = '192.168.4.199', 'port' = '6379', 'password' = '######', table 'person')".stripMargin)
1 | sparkSession.sql("INSERT INTO TABLE person VALUES ('John', 30),('Peter', 45)".stripMargin) |
1 | sparkSession.sql("SELECT * FROM person".stripMargin).collect().foreach(println) |
spark.driver.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/redis/*
spark.executor.extraClassPath=/usr/share/extension/dli/spark-jar/datasource/redis/*
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | # _*_ coding: utf-8 _*_ from __future__ import print_function from pyspark.sql.types import StructType, StructField, IntegerType, StringType from pyspark.sql import SparkSession if __name__ == "__main__": # Create a SparkSession session. sparkSession = SparkSession.builder.appName("datasource-redis").getOrCreate() # Set cross-source connection parameters. host = "192.168.4.199" port = "6379" table = "person" auth = "######" # Create a DataFrame and initialize the DataFrame data. # ******* method noe ********* dataList = sparkSession.sparkContext.parallelize([(1, "Katie", 19),(2,"Tom",20)]) schema = StructType([StructField("id", IntegerType(), False),StructField("name", StringType(), False),StructField("age", IntegerType(), False)]) dataFrame_one = sparkSession.createDataFrame(dataList, schema) # ****** method two ****** # jdbcDF = sparkSession.createDataFrame([(3,"Jack", 23)]) # dataFrame = jdbcDF.withColumnRenamed("_1", "id").withColumnRenamed("_2", "name").withColumnRenamed("_3", "age") # Write data to the redis table dataFrame.write.format("redis").option("host", host).option("port", port).option("table", table).option("password", auth).mode("Overwrite").save() # Read data sparkSession.read.format("redis").option("host", host).option("port", port).option("table", table).option("password", auth).load().show() # close session sparkSession.stop() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | # _*_ coding: utf-8 _*_ from __future__ import print_function from pyspark.sql import SparkSession if __name__ == "__main__": # Create a SparkSession sparkSession = SparkSession.builder.appName("datasource_redis").getOrCreate() sparkSession.sql( "CREATE TEMPORARY VIEW person (name STRING, age INT) USING org.apache.spark.sql.redis OPTIONS (\ 'host' = '192.168.4.199', \ 'port' = '6379',\ 'password' = '######',\ 'table'= 'person')".stripMargin); sparkSession.sql("INSERT INTO TABLE person VALUES ('John', 30),('Peter', 45)".stripMargin) sparkSession.sql("SELECT * FROM person".stripMargin).collect().foreach(println) # close session sparkSession.stop() |