You can use GPUs in CCE containers.
Generally, you can use any of the following methods to add a file:
ENV LD_LIBRARY_PATH /usr/local/nvidia/lib64:$LD_LIBRARY_PATH
/bin/bash -c "export LD_LIBRARY_PATH=/usr/local/nvidia/lib64:$LD_LIBRARY_PATH && ..."
... env: - name: LD_LIBRARY_PATH value: /usr/local/nvidia/lib64 ...
Create a workload and request GPUs. You can specify the number of GPUs as follows:
apiVersion: apps/v1 kind: Deployment metadata: name: gpu-test namespace: default spec: replicas: 1 selector: matchLabels: app: gpu-test template: metadata: labels: app: gpu-test spec: containers: - image: nginx:perl name: container-0 resources: requests: cpu: 250m memory: 512Mi nvidia.com/gpu: 1 # Number of requested GPUs limits: cpu: 250m memory: 512Mi nvidia.com/gpu: 1 # Maximum number of GPUs that can be used imagePullSecrets: - name: default-secret
nvidia.com/gpu specifies the number of GPUs to be requested. The value can be smaller than 1. For example, nvidia.com/gpu: 0.5 indicates that multiple pods share a GPU. In this case, all the requested GPU resources come from the same GPU card.
When you use nvidia.com/gpu to specify the number of GPUs, the values of requests and limits must be the same.
After nvidia.com/gpu is specified, workloads will not be scheduled to nodes without GPUs. If the node is GPU-starved, Kubernetes events similar to the following are reported:
To use GPU resources on the CCE console, you only need to configure the GPU quota when creating a workload.
CCE will label GPU-enabled nodes after they are created. Different types of GPU-enabled nodes have different labels.
$ kubectl get node -L accelerator NAME STATUS ROLES AGE VERSION ACCELERATOR 10.100.2.179 Ready <none> 8m43s v1.19.10-r0-CCE21.11.1.B006-21.11.1.B006 nvidia-t4
When using GPUs, you can enable the affinity between pods and nodes based on labels so that the pods can be scheduled to the correct nodes.
apiVersion: apps/v1 kind: Deployment metadata: name: gpu-test namespace: default spec: replicas: 1 selector: matchLabels: app: gpu-test template: metadata: labels: app: gpu-test spec: nodeSelector: accelerator: nvidia-t4 containers: - image: nginx:perl name: container-0 resources: requests: cpu: 250m memory: 512Mi nvidia.com/gpu: 1 # Number of requested GPUs limits: cpu: 250m memory: 512Mi nvidia.com/gpu: 1 # Maximum number of GPUs that can be used imagePullSecrets: - name: default-secret