Relationship Between YARN and Other Components

Relationship Between YARN and Spark

The Spark computing and scheduling can be implemented using YARN mode. Spark enjoys the compute resources provided by YARN clusters and runs tasks in a distributed way. Spark on YARN has two modes: YARN-cluster and YARN-client.

Relationship Between YARN and MapReduce

MapReduce is a computing framework running on YARN, which is used for batch processing. MRv1 is implemented based on MapReduce in Hadoop 1.0, which is composed of programming models (new and old programming APIs), running environment (JobTracker and TaskTracker), and data processing engine (MapTask and ReduceTask). This framework is still weak in scalability, fault tolerance (JobTracker SPOF), and compatibility with multiple frameworks. (Currently, only the MapReduce computing framework is supported.) MRv2 is implemented based on MapReduce in Hadoop 2.0. The source code reuses MRv1 programming models and data processing engine implementation, and the running environment is composed of ResourceManager and ApplicationMaster. ResourceManager is a brand new resource manager system, and ApplicationMaster is responsible for cutting MapReduce job data, assigning tasks, applying for resources, scheduling tasks, and tolerating faults.

Relationship Between YARN and ZooKeeper

Figure 3 shows the relationship between ZooKeeper and YARN.

Figure 3 Relationship Between ZooKeeper and YARN
  1. When the system is started, ResourceManager attempts to write state information to ZooKeeper. ResourceManager that first writes state information to ZooKeeper is selected as the active ResourceManager, and others are standby ResourceManagers. The standby ResourceManagers periodically monitor active ResourceManager election information in ZooKeeper.
  2. The active ResourceManager creates the Statestore directory in ZooKeeper to store application information. If the active ResourceManager is faulty, the standby ResourceManager obtains application information from the Statestore directory and restores the data.

Relationship Between YARN and Tez

The Hive on Tez job information requires the TimeLine Server capability of YARN so that Hive tasks can display the current and historical status of applications, facilitating storage and retrieval.