This API is used to query the details about a specified training job configuration.
GET /v1/{project_id}/training-job-configs/{config_name}
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
project_id |
Yes |
String |
Project ID. For details about how to obtain the project ID, see Obtaining a Project ID. |
config_name |
Yes |
String |
Name of a training job configuration |
Parameter |
Mandatory |
Type |
Description |
---|---|---|---|
config_type |
No |
String |
Configuration type to be queried. Options:
|
None
Parameter |
Type |
Description |
---|---|---|
is_success |
Boolean |
Whether the request is successful |
error_message |
String |
Error message of a failed API call. This parameter is not included when the API call succeeds. |
error_code |
String |
Error code of a failed API call. For details, see Error Codes. This parameter is not included when the API call succeeds. |
config_name |
String |
Name of a training job configuration |
config_desc |
String |
Description of a training job configuration |
worker_server_num |
Integer |
Number of workers in a training job |
app_url |
String |
Code directory of a training job |
boot_file_url |
String |
Boot file of a training job |
model_id |
Long |
Model ID of a training job |
parameter |
JSON Array |
Running parameters of a training job. It is a collection of label-value pairs. This parameter is a container environment variable when a training job uses a custom image. For details, see Table 8. |
spec_id |
Long |
ID of the resource specifications selected for a training job |
data_url |
String |
Dataset of a training job |
dataset_id |
String |
Dataset ID of a training job |
dataset_version_id |
String |
Dataset version ID of a training job |
data_source |
JSON Array |
Datasets of a training job For details, see Table 4. |
engine_type |
Integer |
Engine type of a training job |
engine_name |
String |
Name of the engine selected for a training job |
engine_id |
Long |
ID of the engine selected for a training job |
engine_version |
String |
Version of the engine selected for a training job |
train_url |
String |
OBS URL of the output file of a training job. By default, this parameter is left blank. Example value: /usr/train/ |
log_url |
String |
OBS URL of the logs of a training job. By default, this parameter is left blank. Example value: /usr/train/ |
user_image_url |
String |
SWR URL of a custom image used by a training job |
user_command |
String |
Boot command used to start the container of a custom image of a training job |
spec_code |
String |
Resource specifications selected for a training job |
gpu_type |
String |
GPU type of the resource specifications |
create_time |
Long |
Time when a training job parameter configuration is created |
cpu |
String |
CPU memory of the resource specifications |
gpu_num |
Integer |
Number of GPUs of the resource specifications |
core |
String |
Number of cores of the resource specifications |
dataset_name |
String |
Dataset of a training job |
dataset_version_name |
String |
Dataset of a training job |
pool_id |
String |
ID of a resource pool |
pool_name |
String |
Name of a resource pool |
volumes |
JSON Array |
Storage volume that can be used by a training job. For details, see Table 5. |
nas_mount_path |
String |
Local mount path of SFS Turbo (NAS). Example value: /home/work/nas |
nas_share_addr |
String |
Shared path of SFS Turbo (NAS). Example value: 192.168.8.150:/ |
nas_type |
String |
Only NFS is supported. Example value: nfs |
Parameter |
Type |
Description |
---|---|---|
dataset_id |
String |
Dataset ID of a training job |
dataset_version |
String |
Dataset version ID of a training job |
type |
String |
Dataset type. Options:
|
data_url |
String |
OBS bucket path |
Parameter |
Type |
Description |
---|---|---|
nfs |
Object |
Storage volume of the shared file system type. Only the training jobs running in the resource pool with the shared file system network connected support such storage volume. For details, see Table 6. |
host_path |
Object |
Storage volume of the host file system type. Only training jobs running in the dedicated resource pool support such storage volume. For details, see Table 7. |
Parameter |
Type |
Description |
---|---|---|
id |
String |
ID of an SFS Turbo file system |
src_path |
String |
Address of an SFS Turbo file system |
dest_path |
String |
Local path of a training job |
read_only |
Boolean |
Whether dest_path is read-only. The default value is false.
|
Parameter |
Type |
Description |
---|---|---|
src_path |
String |
Local path of a host |
dest_path |
String |
Local path of a training job |
read_only |
Boolean |
Whether dest_path is read-only. The default value is false.
|
Parameter |
Type |
Description |
---|---|---|
label |
String |
Parameter name |
value |
String |
Parameter value |
The following shows how to query the details about the job configuration named config123.
GET https://endpoint/v1/{project_id}/training-job-configs/config123
{ "spec_code": "modelarts.vm.gpu.v100", "user_image_url": "100.125.5.235:20202/jobmng/custom-cpu-base:1.0", "user_command": "bash -x /home/work/run_train.sh python /home/work/user-job-dir/app/mnist/mnist_softmax.py --data_url /home/work/user-job-dir/app/mnist_data", "dataset_version_id": "2ff0d6ba-c480-45ae-be41-09a8369bfc90", "engine_name": "TensorFlow", "is_success": true, "nas_mount_path": "/home/work/nas", "worker_server_num": 1, "nas_share_addr": "192.168.8.150:/", "train_url": "/test/minst/train_out/out1/", "nas_type": "nfs", "spec_id": 4, "parameter": [ { "label": "learning_rate", "value": 0.01 } ], "log_url": "/usr/log/", "config_name": "config123", "app_url": "/usr/app/", "create_time": 1559045426000, "dataset_id": "38277e62-9e59-48f4-8d89-c8cf41622c24", "volumes": [ { "nfs": { "id": "43b37236-9afa-4855-8174-32254b9562e7", "src_path": "192.168.8.150:/", "dest_path": "/home/work/nas", "read_only": false } }, { "host_path": { "src_path": "/root/work", "dest_path": "/home/mind", "read_only": false } } ], "cpu": "64", "model_id": 4, "boot_file_url": "/usr/app/boot.py", "dataset_name": "dataset-test", "pool_id": "pool9928813f", "config_desc": "This is a config desc test", "gpu_num": 1, "data_source": [ { "type": "obs", "data_url": "/test/minst/data/" } ], "pool_name": "p100", "dataset_version_name": "dataset-version-test", "core": "8", "engine_type": 1, "engine_id": 3, "engine_version": "TF-1.8.0-python2.7", "data_url": "/test/minst/data/" }
{ "is_success": false, "error_message": "Error string", "error_code": "ModelArts.0105" }
For details about the status code, see Table 1.
See Error Codes.