Querying a Built-in Algorithm

Function

This API is used to query the details about a built-in model.

URI

GET /v1/{project_id}/built-in-algorithms

Table 1 describes the required parameters.
Table 1 Parameters

Parameter

Mandatory

Type

Description

project_id

Yes

String

Project ID. For details about how to obtain the project ID, see Obtaining a Project ID.

Request Body

Table 2 describes the request parameters.

Table 2 Query parameters

Parameter

Mandatory

Type

Description

per_page

No

Integer

Number of job parameters displayed on each page. The value range is [1, 100]. Default value: 10

page

No

Integer

Index of the page to be queried. Default value: 1

sortBy

No

String

Sorting mode of the query. The value can be engine, model_name, model_precision, model_usage, model_precision, model_size, create_time, or parameter. Default value: engine

order

No

String

Sorting order. The options are as follows:

  • asc: ascending order
  • desc: descending order. The default value is desc.

search_content

No

String

Search content, for example, a parameter name. By default, this parameter is left blank.

Response Body

Table 3 describes the response parameters.
Table 3 Parameters

Parameter

Type

Description

is_success

Boolean

Whether the request is successful

error_message

String

Error message of a failed API call.

This parameter is not included when the API call succeeds.

error_code

String

Error code of a failed API call. For details, see Error Codes. This parameter is not included when the API call succeeds.

model_total_count

Integer

Number of models

models

Array<Object>

Model parameter list. For details, see Table 4.

Table 4 models structure data

Parameter

Type

Description

model_id

Integer

Model ID

model_name

String

Model name

model_usage

Integer

Model usage. The options are as follows:

  • 1: image classification
  • 2: object class and location
  • 3: image semantic segmentation
  • 4: natural language processing
  • 5: image embedding

model_precision

String

Model precision

model_size

Long

Model size, in bytes

model_train_dataset

String

Model training dataset

model_dataset_format

String

Dataset format required by a model

model_description_url

String

URL of the model description

parameter

String

Running parameters of a model. This parameter is a container environment variable when a training job uses a custom image. For details, see the sample request.

create_time

Long

Time when a model is created

engine_id

Long

Engine ID of a model

engine_name

String

Engine name of a model

engine_version

String

Engine version of a model

Table 5 parameter parameters

Parameter

Type

Description

label

String

Parameter name

value

String

Parameter value

required

Boolean

Whether a parameter is mandatory

Samples

The following shows how to query the algorithm whose name contains configname.

Status Code

For details about the status code, see Status Code.

Error Codes

See Error Codes.