:original_name: modelarts_23_0173.html .. _modelarts_23_0173: TensorFlow ========== TensorFlow has two types of APIs: Keras and tf. Keras and tf use different code for training and saving models, but the same code for inference. Training a Model (Keras API) ---------------------------- .. code-block:: from keras.models import Sequential model = Sequential() from keras.layers import Dense import tensorflow as tf # Import a training dataset. mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 print(x_train.shape) from keras.layers import Dense from keras.models import Sequential import keras from keras.layers import Dense, Activation, Flatten, Dropout # Define a model network. model = Sequential() model.add(Flatten(input_shape=(28,28))) model.add(Dense(units=5120,activation='relu')) model.add(Dropout(0.2)) model.add(Dense(units=10, activation='softmax')) # Define an optimizer and loss functions. model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.summary() # Train the model. model.fit(x_train, y_train, epochs=2) # Evaluate the model. model.evaluate(x_test, y_test) Saving a Model (Keras API) -------------------------- .. code-block:: from keras import backend as K # K.get_session().run(tf.global_variables_initializer()) # Define the inputs and outputs of the prediction API. # The key values of the inputs and outputs dictionaries are used as the index keys for the input and output tensors of the model. # The input and output definitions of the model must match the custom inference script. predict_signature = tf.saved_model.signature_def_utils.predict_signature_def( inputs={"images" : model.input}, outputs={"scores" : model.output} ) # Define a save path. builder = tf.saved_model.builder.SavedModelBuilder('./mnist_keras/') builder.add_meta_graph_and_variables( sess = K.get_session(), # The tf.saved_model.tag_constants.SERVING tag needs to be defined for inference and deployment. tags=[tf.saved_model.tag_constants.SERVING], """ signature_def_map: Only single items can exist, or the corresponding key needs to be defined as follows: tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY """ signature_def_map={ tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: predict_signature } ) builder.save() Training a Model (tf API) ------------------------- .. code-block:: from __future__ import print_function import gzip import os import urllib import numpy import tensorflow as tf from six.moves import urllib # Training data is obtained from the Yann LeCun official website http://yann.lecun.com/exdb/mnist/. SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/' TRAIN_IMAGES = 'train-images-idx3-ubyte.gz' TRAIN_LABELS = 'train-labels-idx1-ubyte.gz' TEST_IMAGES = 't10k-images-idx3-ubyte.gz' TEST_LABELS = 't10k-labels-idx1-ubyte.gz' VALIDATION_SIZE = 5000 def maybe_download(filename, work_directory): """Download the data from Yann's website, unless it's already here.""" if not os.path.exists(work_directory): os.mkdir(work_directory) filepath = os.path.join(work_directory, filename) if not os.path.exists(filepath): filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath) statinfo = os.stat(filepath) print('Successfully downloaded %s %d bytes.' % (filename, statinfo.st_size)) return filepath def _read32(bytestream): dt = numpy.dtype(numpy.uint32).newbyteorder('>') return numpy.frombuffer(bytestream.read(4), dtype=dt)[0] def extract_images(filename): """Extract the images into a 4D uint8 numpy array [index, y, x, depth].""" print('Extracting %s' % filename) with gzip.open(filename) as bytestream: magic = _read32(bytestream) if magic != 2051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, filename)) num_images = _read32(bytestream) rows = _read32(bytestream) cols = _read32(bytestream) buf = bytestream.read(rows * cols * num_images) data = numpy.frombuffer(buf, dtype=numpy.uint8) data = data.reshape(num_images, rows, cols, 1) return data def dense_to_one_hot(labels_dense, num_classes=10): """Convert class labels from scalars to one-hot vectors.""" num_labels = labels_dense.shape[0] index_offset = numpy.arange(num_labels) * num_classes labels_one_hot = numpy.zeros((num_labels, num_classes)) labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 return labels_one_hot def extract_labels(filename, one_hot=False): """Extract the labels into a 1D uint8 numpy array [index].""" print('Extracting %s' % filename) with gzip.open(filename) as bytestream: magic = _read32(bytestream) if magic != 2049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, filename)) num_items = _read32(bytestream) buf = bytestream.read(num_items) labels = numpy.frombuffer(buf, dtype=numpy.uint8) if one_hot: return dense_to_one_hot(labels) return labels class DataSet(object): """Class encompassing test, validation and training MNIST data set.""" def __init__(self, images, labels, fake_data=False, one_hot=False): """Construct a DataSet. one_hot arg is used only if fake_data is true.""" if fake_data: self._num_examples = 10000 self.one_hot = one_hot else: assert images.shape[0] == labels.shape[0], ( 'images.shape: %s labels.shape: %s' % (images.shape, labels.shape)) self._num_examples = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) assert images.shape[3] == 1 images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) # Convert from [0, 255] -> [0.0, 1.0]. images = images.astype(numpy.float32) images = numpy.multiply(images, 1.0 / 255.0) self._images = images self._labels = labels self._epochs_completed = 0 self._index_in_epoch = 0 @property def images(self): return self._images @property def labels(self): return self._labels @property def num_examples(self): return self._num_examples @property def epochs_completed(self): return self._epochs_completed def next_batch(self, batch_size, fake_data=False): """Return the next `batch_size` examples from this data set.""" if fake_data: fake_image = [1] * 784 if self.one_hot: fake_label = [1] + [0] * 9 else: fake_label = 0 return [fake_image for _ in range(batch_size)], [ fake_label for _ in range(batch_size) ] start = self._index_in_epoch self._index_in_epoch += batch_size if self._index_in_epoch > self._num_examples: # Finished epoch self._epochs_completed += 1 # Shuffle the data perm = numpy.arange(self._num_examples) numpy.random.shuffle(perm) self._images = self._images[perm] self._labels = self._labels[perm] # Start next epoch start = 0 self._index_in_epoch = batch_size assert batch_size <= self._num_examples end = self._index_in_epoch return self._images[start:end], self._labels[start:end] def read_data_sets(train_dir, fake_data=False, one_hot=False): """Return training, validation and testing data sets.""" class DataSets(object): pass data_sets = DataSets() if fake_data: data_sets.train = DataSet([], [], fake_data=True, one_hot=one_hot) data_sets.validation = DataSet([], [], fake_data=True, one_hot=one_hot) data_sets.test = DataSet([], [], fake_data=True, one_hot=one_hot) return data_sets local_file = maybe_download(TRAIN_IMAGES, train_dir) train_images = extract_images(local_file) local_file = maybe_download(TRAIN_LABELS, train_dir) train_labels = extract_labels(local_file, one_hot=one_hot) local_file = maybe_download(TEST_IMAGES, train_dir) test_images = extract_images(local_file) local_file = maybe_download(TEST_LABELS, train_dir) test_labels = extract_labels(local_file, one_hot=one_hot) validation_images = train_images[:VALIDATION_SIZE] validation_labels = train_labels[:VALIDATION_SIZE] train_images = train_images[VALIDATION_SIZE:] train_labels = train_labels[VALIDATION_SIZE:] data_sets.train = DataSet(train_images, train_labels) data_sets.validation = DataSet(validation_images, validation_labels) data_sets.test = DataSet(test_images, test_labels) return data_sets training_iteration = 1000 modelarts_example_path = './modelarts-mnist-train-save-deploy-example' export_path = modelarts_example_path + '/model/' data_path = './' print('Training model...') mnist = read_data_sets(data_path, one_hot=True) sess = tf.InteractiveSession() serialized_tf_example = tf.placeholder(tf.string, name='tf_example') feature_configs = {'x': tf.FixedLenFeature(shape=[784], dtype=tf.float32), } tf_example = tf.parse_example(serialized_tf_example, feature_configs) x = tf.identity(tf_example['x'], name='x') # use tf.identity() to assign name y_ = tf.placeholder('float', shape=[None, 10]) w = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) sess.run(tf.global_variables_initializer()) y = tf.nn.softmax(tf.matmul(x, w) + b, name='y') cross_entropy = -tf.reduce_sum(y_ * tf.log(y)) train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) values, indices = tf.nn.top_k(y, 10) table = tf.contrib.lookup.index_to_string_table_from_tensor( tf.constant([str(i) for i in range(10)])) prediction_classes = table.lookup(tf.to_int64(indices)) for _ in range(training_iteration): batch = mnist.train.next_batch(50) train_step.run(feed_dict={x: batch[0], y_: batch[1]}) correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float')) print('training accuracy %g' % sess.run( accuracy, feed_dict={ x: mnist.test.images, y_: mnist.test.labels })) print('Done training!') Saving a Model (tf API) ----------------------- .. code-block:: # Export the model. # The model needs to be saved using the saved_model API. print('Exporting trained model to', export_path) builder = tf.saved_model.builder.SavedModelBuilder(export_path) tensor_info_x = tf.saved_model.utils.build_tensor_info(x) tensor_info_y = tf.saved_model.utils.build_tensor_info(y) # Define the inputs and outputs of the prediction API. # The key values of the inputs and outputs dictionaries are used as the index keys for the input and output tensors of the model. # The input and output definitions of the model must match the custom inference script. prediction_signature = ( tf.saved_model.signature_def_utils.build_signature_def( inputs={'images': tensor_info_x}, outputs={'scores': tensor_info_y}, method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)) legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op') builder.add_meta_graph_and_variables( # Set tag to serve/tf.saved_model.tag_constants.SERVING. sess, [tf.saved_model.tag_constants.SERVING], signature_def_map={ 'predict_images': prediction_signature, }, legacy_init_op=legacy_init_op) builder.save() print('Done exporting!') Inference Code (Keras and tf APIs) ---------------------------------- .. code-block:: from PIL import Image import numpy as np from model_service.tfserving_model_service import TfServingBaseService class mnist_service(TfServingBaseService): # Match the model input with the user's HTTPS API input during preprocessing. # The model input corresponding to the preceding training part is {"images":}. def _preprocess(self, data): preprocessed_data = {} images = [] # Iterate the input data. for k, v in data.items(): for file_name, file_content in v.items(): image1 = Image.open(file_content) image1 = np.array(image1, dtype=np.float32) image1.resize((1,784)) images.append(image1) # Return the numpy array. images = np.array(images,dtype=np.float32) # Perform batch processing on multiple input samples and ensure that the shape is the same as that inputted during training. images.resize((len(data), 784)) preprocessed_data['images'] = images return preprocessed_data # Processing logic of the inference for invoking the parent class. # The output corresponding to model saving in the preceding training part is {"scores":}. # Postprocess the HTTPS output. def _postprocess(self, data): infer_output = {"mnist_result": []} # Iterate the model output. for output_name, results in data.items(): for result in results: infer_output["mnist_result"].append(result.index(max(result))) return infer_output