:original_name: modelarts_23_0179.html .. _modelarts_23_0179: Scikit Learn ============ Training and Saving a Model --------------------------- .. code-block:: import json import pandas as pd from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.externals import joblib iris = pd.read_csv('/home/ma-user/work/iris.csv') X = iris.drop(['variety'],axis=1) y = iris[['variety']] # Create a LogisticRegression instance and train model logisticRegression = LogisticRegression(C=1000.0, random_state=0) logisticRegression.fit(X,y) # Save model to local path joblib.dump(logisticRegression, '/tmp/sklearn.m') Before training, download the **iris.csv** dataset, decompress it, and upload it to the **/home/ma-user/work/** directory of the notebook instance. Download the **iris.csv** dataset from https://gist.github.com/netj/8836201. After the model is saved, it must be uploaded to the OBS directory before being published. The **config.json** and **customize_service.py** files must be contained during publishing. For details about the definition method, see :ref:`Model Package Specifications `. Inference Code -------------- .. code-block:: # coding:utf-8 import collections import json from sklearn.externals import joblib from model_service.python_model_service import XgSklServingBaseService class user_Service(XgSklServingBaseService): # request data preprocess def _preprocess(self, data): list_data = [] json_data = json.loads(data, object_pairs_hook=collections.OrderedDict) for element in json_data["data"]["req_data"]: array = [] for each in element: array.append(element[each]) list_data.append(array) return list_data # predict def _inference(self, data): sk_model = joblib.load(self.model_path) pre_result = sk_model.predict(data) pre_result = pre_result.tolist() return pre_result # predict result process def _postprocess(self,data): resp_data = [] for element in data: resp_data.append({"predictresult": element}) return resp_data