:original_name: modelarts_23_0175.html
.. _modelarts_23_0175:
PyTorch
=======
Training a Model
----------------
.. code-block::
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
# Define a network structure.
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# The second dimension of the input must be 784.
self.hidden1 = nn.Linear(784, 5120, bias=False)
self.output = nn.Linear(5120, 10, bias=False)
def forward(self, x):
x = x.view(x.size()[0], -1)
x = F.relu((self.hidden1(x)))
x = F.dropout(x, 0.2)
x = self.output(x)
return F.log_softmax(x)
def train(model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.cross_entropy(output, target)
loss.backward()
optimizer.step()
if batch_idx % 10 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test( model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
device = torch.device("cpu")
batch_size=64
kwargs={}
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('.', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor()
])),
batch_size=batch_size, shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('.', train=False, transform=transforms.Compose([
transforms.ToTensor()
])),
batch_size=1000, shuffle=True, **kwargs)
model = Net().to(device)
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
optimizer = optim.Adam(model.parameters())
for epoch in range(1, 2 + 1):
train(model, device, train_loader, optimizer, epoch)
test(model, device, test_loader)
Saving a Model
--------------
.. code-block::
# The model must be saved using state_dict and can be deployed remotely.
torch.save(model.state_dict(), "pytorch_mnist/mnist_mlp.pt")
Inference Code
--------------
.. code-block::
from PIL import Image
import log
from model_service.pytorch_model_service import PTServingBaseService
import torch.nn.functional as F
import torch.nn as nn
import torch
import json
import numpy as np
logger = log.getLogger(__name__)
import torchvision.transforms as transforms
# Define model preprocessing.
infer_transformation = transforms.Compose([
transforms.Resize((28,28)),
# Transform to a PyTorch tensor.
transforms.ToTensor()
])
import os
class PTVisionService(PTServingBaseService):
def __init__(self, model_name, model_path):
# Call the constructor of the parent class.
super(PTVisionService, self).__init__(model_name, model_path)
# Call the customized function to load the model.
self.model = Mnist(model_path)
# Load tags.
self.label = [0,1,2,3,4,5,6,7,8,9]
# Labels can also be loaded by label file.
# Store the label.json file in the model directory. The following information is read:
dir_path = os.path.dirname(os.path.realpath(self.model_path))
with open(os.path.join(dir_path, 'label.json')) as f:
self.label = json.load(f)
def _preprocess(self, data):
preprocessed_data = {}
for k, v in data.items():
input_batch = []
for file_name, file_content in v.items():
with Image.open(file_content) as image1:
# Gray processing
image1 = image1.convert("L")
if torch.cuda.is_available():
input_batch.append(infer_transformation(image1).cuda())
else:
input_batch.append(infer_transformation(image1))
input_batch_var = torch.autograd.Variable(torch.stack(input_batch, dim=0), volatile=True)
print(input_batch_var.shape)
preprocessed_data[k] = input_batch_var
return preprocessed_data
def _postprocess(self, data):
results = []
for k, v in data.items():
result = torch.argmax(v[0])
result = {k: self.label[result]}
results.append(result)
return results
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.hidden1 = nn.Linear(784, 5120, bias=False)
self.output = nn.Linear(5120, 10, bias=False)
def forward(self, x):
x = x.view(x.size()[0], -1)
x = F.relu((self.hidden1(x)))
x = F.dropout(x, 0.2)
x = self.output(x)
return F.log_softmax(x)
def Mnist(model_path, **kwargs):
# Generate a network.
model = Net()
# Load the model.
if torch.cuda.is_available():
device = torch.device('cuda')
model.load_state_dict(torch.load(model_path, map_location="cuda:0"))
else:
device = torch.device('cpu')
model.load_state_dict(torch.load(model_path, map_location=device))
# CPU or GPU mapping
model.to(device)
# Declare an inference mode.
model.eval()
return model