:original_name: modelarts_23_0335.html
.. _modelarts_23_0335:
Using ModelArts SDKs
====================
In notebook instances, you can use ModelArts SDKs to manage OBS, training jobs, models, and real-time services.
For details about how to use ModelArts SDKs, see `ModelArts SDK Reference `__.
Notebooks carry the authentication (AK/SK) and region information about login users. Therefore, SDK session authentication can be completed without entering parameters.
Example Code
------------
- Creating a training job
.. code-block::
from modelarts.session import Session
from modelarts.estimator import Estimator
session = Session()
estimator = Estimator(
modelarts_session=session,
framework_type='PyTorch', # AI engine name
framework_version='PyTorch-1.0.0-python3.6', # AI engine version
code_dir='/obs-bucket-name/src/', # Training script directory
boot_file='/obs-bucket-name/src/pytorch_sentiment.py', # Training startup script directory
log_url='/obs-bucket-name/log/', # Training log directory
hyperparameters=[
{"label":"classes",
"value": "10"},
{"label":"lr",
"value": "0.001"}
],
output_path='/obs-bucket-name/output/', # Training output directory
train_instance_type='modelarts.vm.gpu.p100', # Training environment specifications
train_instance_count=1, # Number of training nodes
job_description='pytorch-sentiment with ModelArts SDK') # Training job description
job_instance = estimator.fit(inputs='/obs-bucket-name/data/train/', wait=False, job_name='my_training_job')
- Querying a model list
.. code-block::
from modelarts.session import Session
from modelarts.model import Model
session = Session()
model_list_resp = Model.get_model_list(session, model_status="published", model_name="digit", order="desc")
- Querying service details
.. code-block::
from modelarts.session import Session
from modelarts.model import Predictor
session = Session()
predictor_instance = Predictor(session, service_id="input your service_id")
predictor_info_resp = predictor_instance.get_service_info()