diff --git a/umn/source/exeml/predictive_analytics/preparing_data.rst b/umn/source/exeml/predictive_analytics/preparing_data.rst index ea50c5f..659be27 100644 --- a/umn/source/exeml/predictive_analytics/preparing_data.rst +++ b/umn/source/exeml/predictive_analytics/preparing_data.rst @@ -21,7 +21,7 @@ Requirements on Datasets ------------------------ - The name of files in a dataset consists of letters, digits, hyphens (-), and underscores (_), and the file name extension is CSV. The files cannot be stored in the root directory of an OBS bucket, but in a folder in the OBS bucket, for example, **/obs-xxx/data/input.csv**. -- The files are saved in CSV format. Use newline characters (\n) to separate lines and commas (,) to separate columns of the file content. The file content cannot contain Chinese characters. The column content cannot contain special characters such as commas (,) and newline characters. The quotation marks are not supported. It is recommended that the column content consist of letters and digits. +- The files are saved in CSV format. Use newline characters (\\n) to separate lines and commas (,) to separate columns of the file content. The file content cannot contain Chinese characters. The column content cannot contain special characters such as commas (,) and newline characters. The quotation marks are not supported. It is recommended that the column content consist of letters and digits. - The number of training columns is the same. There are at least 100 different data records (a feature with different values is considered as different data) in total. The training columns cannot contain the data of the timestamp format (such as yy-mm-dd and yyyy-mm-dd). If a column has only one value, the column is considered invalid and discarded. Ensure that the dataset contains at least two valid columns except the label column. If you select continuous values for a label column, ensure that the column contains only digits and the training data has at least 25 different values. The training data CSV file cannot contain the table header. Otherwise, the training fails. Requirements for Files Uploaded to OBS diff --git a/umn/source/faqs/exeml/what_are_the_requirements_for_training_data_when_you_create_a_predictive_analytics_project_in_exeml.rst b/umn/source/faqs/exeml/what_are_the_requirements_for_training_data_when_you_create_a_predictive_analytics_project_in_exeml.rst index 48833f1..5658155 100644 --- a/umn/source/faqs/exeml/what_are_the_requirements_for_training_data_when_you_create_a_predictive_analytics_project_in_exeml.rst +++ b/umn/source/faqs/exeml/what_are_the_requirements_for_training_data_when_you_create_a_predictive_analytics_project_in_exeml.rst @@ -10,5 +10,5 @@ Requirements on Datasets - Data files cannot be stored in the root directory of an OBS bucket. - The name of files in a dataset consists of letters, digits, hyphens (-), and underscores (_), and the file name extension is CSV. -- The files are saved in CSV format. Use newline characters (\n or LF) to separate lines and commas (,) to separate columns of the file content. The file content cannot contain Chinese characters. The column content cannot contain special characters such as commas (,) and newline characters. The quotation marks are not supported. It is recommended that the column content consist of letters and digits. +- The files are saved in CSV format. Use newline characters (\\n or LF) to separate lines and commas (,) to separate columns of the file content. The file content cannot contain Chinese characters. The column content cannot contain special characters such as commas (,) and newline characters. The quotation marks are not supported. It is recommended that the column content consist of letters and digits. - The number of columns in the training data must be the same, and the total number of data records must be greater than or equal to 100. The training columns cannot contain data of the timestamp format (such as yy-mm-dd or yyyy-mm-dd). If you select continuous values for a label column, ensure that the column contains only digits and the training data has at least 25 different values. The training data CSV file cannot contain the table header. Otherwise, the training fails. diff --git a/umn/source/faqs/general_issues/which_ai_frameworks_does_modelarts_support.rst b/umn/source/faqs/general_issues/which_ai_frameworks_does_modelarts_support.rst index c84acab..4306dcc 100644 --- a/umn/source/faqs/general_issues/which_ai_frameworks_does_modelarts_support.rst +++ b/umn/source/faqs/general_issues/which_ai_frameworks_does_modelarts_support.rst @@ -57,27 +57,27 @@ Supported AI engines and versions when creating training jobs are as follows: .. table:: **Table 2** AI engines supported by training jobs - +-----------------+----------------+---------------------+----------------+-------------------------------+------------------------+ - | Environment | Supported Chip | System Architecture | System Version | AI Engine and Version | Supported CUDA Version | - +=================+================+=====================+================+===============================+========================+ - | TensorFlow | CPU and GPU | x86_64 | Ubuntu 16.04 | TF-1.13.1-python3.6 | CUDA 10.0 | - +-----------------+----------------+---------------------+----------------+-------------------------------+------------------------+ - | | | | | TF-1.8.0-python3.6 | CUDA 9.0 | - +-----------------+----------------+---------------------+----------------+-------------------------------+------------------------+ - | | | | | TF-2.1.0-python3.6 | CUDA 10.1 | - +-----------------+----------------+---------------------+----------------+-------------------------------+------------------------+ - | Caffe | CPU and GPU | x86_64 | Ubuntu 16.04 | Caffe-1.0.0-python2.7 | CUDA 8.0 | - +-----------------+----------------+---------------------+----------------+-------------------------------+------------------------+ - | Spark_MLlib | CPU | x86_64 | Ubuntu 16.04 | Spark-2.3.2-python3.6 | N/A | - +-----------------+----------------+---------------------+----------------+-------------------------------+------------------------+ - | XGBoost-Sklearn | CPU | x86_64 | Ubuntu 16.04 | Scikit_Learn-0.18.1-python3.6 | N/A | - +-----------------+----------------+---------------------+----------------+-------------------------------+------------------------+ - | PyTorch | CPU and GPU | x86_64 | Ubuntu 16.04 | PyTorch-1.3.0-python3.6 | CUDA 10.0 | - +-----------------+----------------+---------------------+----------------+-------------------------------+------------------------+ - | | | | | PyTorch-1.0.0-python3.6 | CUDA 9.0 | - +-----------------+----------------+---------------------+----------------+-------------------------------+------------------------+ - | MXNet | CPU/GPU | x86_64 | Ubuntu16.04 | MXNet-1.2.1-python3.6 | CUDA 9.0 | - +-----------------+----------------+---------------------+----------------+-------------------------------+------------------------+ + +-----------------+----------------+---------------------+----------------+-------------------------------+-------------------------+ + | Environment | Supported Chip | System Architecture | System Version | AI Engine and Version | Supported CUDA Version | + +=================+================+=====================+================+===============================+=========================+ + | TensorFlow | CPU and GPU | x86_64 | Ubuntu 16.04 | TF-1.13.1-python3.6 | CUDA 10.0 | + +-----------------+----------------+---------------------+----------------+-------------------------------+-------------------------+ + | | | | | TF-1.8.0-python3.6 | CUDA 9.0 | + +-----------------+----------------+---------------------+----------------+-------------------------------+-------------------------+ + | | | | | TF-2.1.0-python3.6 | CUDA 10.1 | + +-----------------+----------------+---------------------+----------------+-------------------------------+-------------------------+ + | Caffe | CPU and GPU | x86_64 | Ubuntu 16.04 | Caffe-1.0.0-python2.7 | CUDA 8.0 | + +-----------------+----------------+---------------------+----------------+-------------------------------+-------------------------+ + | Spark_MLlib | CPU | x86_64 | Ubuntu 16.04 | Spark-2.3.2-python3.6 | N/A | + +-----------------+----------------+---------------------+----------------+-------------------------------+-------------------------+ + | XGBoost-Sklearn | CPU | x86_64 | Ubuntu 16.04 | Scikit_Learn-0.18.1-python3.6 | N/A | + +-----------------+----------------+---------------------+----------------+-------------------------------+-------------------------+ + | PyTorch | CPU and GPU | x86_64 | Ubuntu 16.04 | PyTorch-1.3.0-python3.6 | CUDA 10.0 | + +-----------------+----------------+---------------------+----------------+-------------------------------+-------------------------+ + | | | | | PyTorch-1.0.0-python3.6 | CUDA 9.0 | + +-----------------+----------------+---------------------+----------------+-------------------------------+-------------------------+ + | MXNet | CPU/GPU | x86_64 | Ubuntu16.04 | MXNet-1.2.1-python3.6 | CUDA 9.0 | + +-----------------+----------------+---------------------+----------------+-------------------------------+-------------------------+ Model Inference --------------- diff --git a/umn/source/faqs/notebook/what_should_i_do_when_the_system_displays_an_error_message_indicating_that_no_space_left_after_i_run_the_pip_install_command.rst b/umn/source/faqs/notebook/what_should_i_do_when_the_system_displays_an_error_message_indicating_that_no_space_left_after_i_run_the_pip_install_command.rst index 21e7d4d..5e4c38a 100644 --- a/umn/source/faqs/notebook/what_should_i_do_when_the_system_displays_an_error_message_indicating_that_no_space_left_after_i_run_the_pip_install_command.rst +++ b/umn/source/faqs/notebook/what_should_i_do_when_the_system_displays_an_error_message_indicating_that_no_space_left_after_i_run_the_pip_install_command.rst @@ -13,4 +13,4 @@ In the notebook instance, error message "No Space left..." is displayed after th Solution -------- -You are advised to run the **pip install --no-cache \*\*** command instead of the **pip install \*\*** command. Adding the **--no-cache** parameter can solve such problem. +You are advised to run the **pip install --no-cache \*\* ** command instead of the **pip install \*\*** command. Adding the **--no-cache** parameter can solve such problem. diff --git a/umn/source/faqs/training_jobs/what_are_sizes_of_the__cache_directories_for_different_resource_specifications_in_the_training_environment.rst b/umn/source/faqs/training_jobs/what_are_sizes_of_the__cache_directories_for_different_resource_specifications_in_the_training_environment.rst index 5e38f75..1fd5174 100644 --- a/umn/source/faqs/training_jobs/what_are_sizes_of_the__cache_directories_for_different_resource_specifications_in_the_training_environment.rst +++ b/umn/source/faqs/training_jobs/what_are_sizes_of_the__cache_directories_for_different_resource_specifications_in_the_training_environment.rst @@ -5,7 +5,7 @@ What Are Sizes of the /cache Directories for Different Resource Specifications in the Training Environment? =========================================================================================================== -When creating a training job, you can select CPU, GPUresources based on the size of the training job. +When creating a training job, you can select CPU, GPU resources based on the size of the training job. ModelArts mounts the disk to the **/cache** directory. You can use this directory to store temporary files. The **/cache** directory shares resources with the code directory. The directory has different capacities for different resource specifications. diff --git a/umn/source/model_deployment/real-time_services/viewing_service_details.rst b/umn/source/model_deployment/real-time_services/viewing_service_details.rst index c8205f4..8540020 100644 --- a/umn/source/model_deployment/real-time_services/viewing_service_details.rst +++ b/umn/source/model_deployment/real-time_services/viewing_service_details.rst @@ -156,7 +156,7 @@ Customized settings can be used in the following scenarios: +-----------+-------------------------------------------------------------------------------------------------------------------------------------------------------------+ | Character | Description | +===========+=============================================================================================================================================================+ - | . | Match any single character except **``\n``**. To match any character including **``\n``**, use **(.|\n)**. | + | . | Match any single character except **\\n**. To match any character including **\\n**, use **(.|\\n)**. | +-----------+-------------------------------------------------------------------------------------------------------------------------------------------------------------+ | \* | Match the subexpression that it follows for zero or multiple times. For example, **zo\*** can match **z** and **zoo**. | +-----------+-------------------------------------------------------------------------------------------------------------------------------------------------------------+ diff --git a/umn/source/model_management/importing_a_model/importing_a_meta_model_from_obs.rst b/umn/source/model_management/importing_a_model/importing_a_meta_model_from_obs.rst index 337354c..c102bda 100644 --- a/umn/source/model_management/importing_a_model/importing_a_meta_model_from_obs.rst +++ b/umn/source/model_management/importing_a_model/importing_a_meta_model_from_obs.rst @@ -144,7 +144,7 @@ Procedure Follow-Up Procedure ------------------- -- :ref:`Model Deployment `: On the **Models** page, click the triangle next to a model name to view all versions of the model. Locate the row that contains the target version, click **Deploy** in the **Operation** column, and select the deployment type configured when importing the model from the drop-down list. On the **Deploy** page, set parameters by referring to\ :ref:`Introduction to Model Deployment ` . +- :ref:`Model Deployment `: On the **Models** page, click the triangle next to a model name to view all versions of the model. Locate the row that contains the target version, click **Deploy** in the **Operation** column, and select the deployment type configured when importing the model from the drop-down list. On the **Deploy** page, set parameters by referring to :ref:`Introduction to Model Deployment ` . .. |image1| image:: /_static/images/en-us_image_0000001156920973.png .. |image2| image:: /_static/images/en-us_image_0000001156920973.png diff --git a/umn/source/training_management/creating_a_training_job/using_frequently-used_frameworks_to_train_models.rst b/umn/source/training_management/creating_a_training_job/using_frequently-used_frameworks_to_train_models.rst index 0c6e79a..17fea52 100644 --- a/umn/source/training_management/creating_a_training_job/using_frequently-used_frameworks_to_train_models.rst +++ b/umn/source/training_management/creating_a_training_job/using_frequently-used_frameworks_to_train_models.rst @@ -31,27 +31,27 @@ ModelArts supports the following AI engines and versions. .. table:: **Table 1** AI engines supported by training jobs - +-----------------+----------------+---------------------+----------------+-------------------------------+-----------------------+ - | Environment | Supported Chip | System Architecture | System Version | AI Engine and Version | Supported CUDAVersion | - +=================+================+=====================+================+===============================+=======================+ - | TensorFlow | CPU and GPU | x86_64 | Ubuntu 16.04 | TF-1.13.1-python3.6 | CUDA 10.0 | - +-----------------+----------------+---------------------+----------------+-------------------------------+-----------------------+ - | | | | | TF-1.8.0-python3.6 | CUDA 9.0 | - +-----------------+----------------+---------------------+----------------+-------------------------------+-----------------------+ - | | | | | TF-2.1.0-python3.6 | CUDA 10.1 | - +-----------------+----------------+---------------------+----------------+-------------------------------+-----------------------+ - | Caffe | CPU and GPU | x86_64 | Ubuntu 16.04 | Caffe-1.0.0-python2.7 | CUDA 8.0 | - +-----------------+----------------+---------------------+----------------+-------------------------------+-----------------------+ - | Spark_MLlib | CPU | x86_64 | Ubuntu 16.04 | Spark-2.3.2-python3.6 | N/A | - +-----------------+----------------+---------------------+----------------+-------------------------------+-----------------------+ - | XGBoost-Sklearn | CPU | x86_64 | Ubuntu 16.04 | Scikit_Learn-0.18.1-python3.6 | N/A | - +-----------------+----------------+---------------------+----------------+-------------------------------+-----------------------+ - | PyTorch | CPU and GPU | x86_64 | Ubuntu 16.04 | PyTorch-1.3.0-python3.6 | CUDA 10.0 | - +-----------------+----------------+---------------------+----------------+-------------------------------+-----------------------+ - | | | | | PyTorch-1.0.0-python3.6 | CUDA 9.0 | - +-----------------+----------------+---------------------+----------------+-------------------------------+-----------------------+ - | MXNet | CPU/GPU | x86_64 | Ubuntu16.04 | MXNet-1.2.1-python3.6 | CUDA 9.0 | - +-----------------+----------------+---------------------+----------------+-------------------------------+-----------------------+ + +-----------------+----------------+---------------------+----------------+-------------------------------+------------------------+ + | Environment | Supported Chip | System Architecture | System Version | AI Engine and Version | Supported CUDA Version | + +=================+================+=====================+================+===============================+========================+ + | TensorFlow | CPU and GPU | x86_64 | Ubuntu 16.04 | TF-1.13.1-python3.6 | CUDA 10.0 | + +-----------------+----------------+---------------------+----------------+-------------------------------+------------------------+ + | | | | | TF-1.8.0-python3.6 | CUDA 9.0 | + +-----------------+----------------+---------------------+----------------+-------------------------------+------------------------+ + | | | | | TF-2.1.0-python3.6 | CUDA 10.1 | + +-----------------+----------------+---------------------+----------------+-------------------------------+------------------------+ + | Caffe | CPU and GPU | x86_64 | Ubuntu 16.04 | Caffe-1.0.0-python2.7 | CUDA 8.0 | + +-----------------+----------------+---------------------+----------------+-------------------------------+------------------------+ + | Spark_MLlib | CPU | x86_64 | Ubuntu 16.04 | Spark-2.3.2-python3.6 | N/A | + +-----------------+----------------+---------------------+----------------+-------------------------------+------------------------+ + | XGBoost-Sklearn | CPU | x86_64 | Ubuntu 16.04 | Scikit_Learn-0.18.1-python3.6 | N/A | + +-----------------+----------------+---------------------+----------------+-------------------------------+------------------------+ + | PyTorch | CPU and GPU | x86_64 | Ubuntu 16.04 | PyTorch-1.3.0-python3.6 | CUDA 10.0 | + +-----------------+----------------+---------------------+----------------+-------------------------------+------------------------+ + | | | | | PyTorch-1.0.0-python3.6 | CUDA 9.0 | + +-----------------+----------------+---------------------+----------------+-------------------------------+------------------------+ + | MXNet | CPU/GPU | x86_64 | Ubuntu16.04 | MXNet-1.2.1-python3.6 | CUDA 9.0 | + +-----------------+----------------+---------------------+----------------+-------------------------------+------------------------+ Creating a Training Job -----------------------