diff --git a/docs/modelarts/umn/ALL_META.TXT.json b/docs/modelarts/umn/ALL_META.TXT.json index 3081a665..ac0881ef 100644 --- a/docs/modelarts/umn/ALL_META.TXT.json +++ b/docs/modelarts/umn/ALL_META.TXT.json @@ -3,8 +3,8 @@ "dockw":"User Guide" }, { - "uri":"modelarts_01_0000.html", - "node_id":"modelarts_01_0000.xml", + "uri":"modelarts_77_0142.html", + "node_id":"en-us_topic_0000001909850644.xml", "product_code":"modelarts", "code":"1", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -14,10 +14,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Service Overview", @@ -25,7 +23,7 @@ }, { "uri":"modelarts_01_0001.html", - "node_id":"modelarts_01_0001.xml", + "node_id":"en-us_topic_0000001910059694.xml", "product_code":"modelarts", "code":"2", "des":"ModelArts is a one-stop AI development platform geared toward developers and data scientists of all skill levels. It enables you to rapidly build, train, and deploy model", @@ -36,7 +34,9 @@ { "prodname":"modelarts", "opensource":"true", - "documenttype":"usermanual" + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" } ], "title":"What Is ModelArts?", @@ -44,7 +44,7 @@ }, { "uri":"modelarts_01_0003.html", - "node_id":"modelarts_01_0003.xml", + "node_id":"en-us_topic_0000001910019706.xml", "product_code":"modelarts", "code":"3", "des":"AI engineers face challenges in the installation and configuration of various AI tools, data preparation, and model training. To address these challenges, the one-stop AI", @@ -55,7 +55,9 @@ { "prodname":"modelarts", "opensource":"true", - "documenttype":"usermanual" + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" } ], "title":"Functions", @@ -63,7 +65,7 @@ }, { "uri":"modelarts_01_0009.html", - "node_id":"modelarts_01_0009.xml", + "node_id":"en-us_topic_0000001943978889.xml", "product_code":"modelarts", "code":"4", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -74,7 +76,9 @@ { "prodname":"modelarts", "opensource":"true", - "documenttype":"usermanual" + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" } ], "title":"Basic Knowledge", @@ -82,7 +86,7 @@ }, { "uri":"modelarts_01_0010.html", - "node_id":"modelarts_01_0010.xml", + "node_id":"en-us_topic_0000001943978897.xml", "product_code":"modelarts", "code":"5", "des":"Artificial intelligence (AI) is a technology capable of simulating human cognition through machines. The core capability of AI is to make a judgment or prediction based o", @@ -93,7 +97,9 @@ { "prodname":"modelarts", "opensource":"true", - "documenttype":"usermanual" + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" } ], "title":"Introduction to the AI Development Lifecycle", @@ -101,7 +107,7 @@ }, { "uri":"modelarts_01_0011.html", - "node_id":"modelarts_01_0011.xml", + "node_id":"en-us_topic_0000001910019710.xml", "product_code":"modelarts", "code":"6", "des":"Machine learning is classified into supervised, unsupervised, and reinforcement learning.Supervised learning uses labeled samples to adjust the parameters of classifiers ", @@ -112,7 +118,9 @@ { "prodname":"modelarts", "opensource":"true", - "documenttype":"usermanual" + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" } ], "title":"Basic Concepts of AI Development", @@ -120,7 +128,7 @@ }, { "uri":"modelarts_01_0005.html", - "node_id":"modelarts_01_0005.xml", + "node_id":"en-us_topic_0000001910019702.xml", "product_code":"modelarts", "code":"7", "des":"ExeML is the process of automating model design, parameter tuning, and model training, model compression, and model deployment with the labeled data. The process is code-", @@ -131,7 +139,9 @@ { "prodname":"modelarts", "opensource":"true", - "documenttype":"usermanual" + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" } ], "title":"Common Concepts of ModelArts", @@ -139,10 +149,10 @@ }, { "uri":"modelarts_01_0012.html", - "node_id":"modelarts_01_0012.xml", + "node_id":"en-us_topic_0000001943978901.xml", "product_code":"modelarts", "code":"8", - "des":"During AI development, massive volumes of data need to be processed, and data preparation and labeling usually take more than half of the development time. ModelArts data", + "des":"During AI development, massive volumes of data need to be processed, and data preparing and labeling usually take more than half of the time required for the entire devel", "doc_type":"usermanual", "kw":"Data Management,Basic Knowledge,User Guide", "search_title":"", @@ -150,36 +160,19 @@ { "prodname":"modelarts", "opensource":"true", - "documenttype":"usermanual" + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" } ], "title":"Data Management", "githuburl":"" }, { - "uri":"modelarts_01_0013-.html", - "node_id":"modelarts_01_0013-.xml", + "uri":"modelarts_01_0028.html", + "node_id":"en-us_topic_0000001910059686.xml", "product_code":"modelarts", "code":"9", - "des":"It is challenging to set up a development environment, select an AI algorithm framework and algorithm, debug code, install software, and accelerate hardware. To help user", - "doc_type":"usermanual", - "kw":"DevEnviron (Old Version),Basic Knowledge,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual" - } - ], - "title":"DevEnviron (Old Version)", - "githuburl":"" - }, - { - "uri":"modelarts_01_0013.html", - "node_id":"modelarts_01_0013.xml", - "product_code":"modelarts", - "code":"10", "des":"This document describes the DevEnviron notebook functions of the new version.Software development is a process of reducing developer costs and improving development exper", "doc_type":"usermanual", "kw":"Introduction to Development Tools,Basic Knowledge,User Guide", @@ -188,7 +181,9 @@ { "prodname":"modelarts", "opensource":"true", - "documenttype":"usermanual" + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" } ], "title":"Introduction to Development Tools", @@ -196,9 +191,9 @@ }, { "uri":"modelarts_01_0014.html", - "node_id":"modelarts_01_0014.xml", + "node_id":"en-us_topic_0000001910059650.xml", "product_code":"modelarts", - "code":"11", + "code":"10", "des":"In addition to data and algorithms, developers spend a lot of time configuring model training parameters. Model training parameters determine the model's precision and co", "doc_type":"usermanual", "kw":"Model Training,Basic Knowledge,User Guide", @@ -207,7 +202,9 @@ { "prodname":"modelarts", "opensource":"true", - "documenttype":"usermanual" + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" } ], "title":"Model Training", @@ -215,10 +212,10 @@ }, { "uri":"modelarts_01_0015.html", - "node_id":"modelarts_01_0015.xml", + "node_id":"en-us_topic_0000001943978853.xml", "product_code":"modelarts", - "code":"12", - "des":"Generally, AI model deployment and large-scale implementation are complex.The real-time inference service features high concurrency, low latency, and elastic scaling, and", + "code":"11", + "des":"ModelArts is capable of managing models and services. This allows mainstream framework images and models from multiple vendors to be managed in a unified manner.Generally", "doc_type":"usermanual", "kw":"Model Deployment,Basic Knowledge,User Guide", "search_title":"", @@ -226,17 +223,19 @@ { "prodname":"modelarts", "opensource":"true", - "documenttype":"usermanual" + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" } ], "title":"Model Deployment", "githuburl":"" }, { - "uri":"modelarts_01_0020.html", - "node_id":"modelarts_01_0020.xml", + "uri":"modelarts_01_0016.html", + "node_id":"en-us_topic_0000001910019678.xml", "product_code":"modelarts", - "code":"13", + "code":"12", "des":"To implement AI in various industries, AI model development must be simplified. Currently, only a few algorithm engineers and researchers are capable of AI development an", "doc_type":"usermanual", "kw":"ExeML,Basic Knowledge,User Guide", @@ -245,7 +244,9 @@ { "prodname":"modelarts", "opensource":"true", - "documenttype":"usermanual" + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" } ], "title":"ExeML", @@ -253,10 +254,10 @@ }, { "uri":"modelarts_01_0006.html", - "node_id":"modelarts_01_0006.xml", + "node_id":"en-us_topic_0000001910019690.xml", "product_code":"modelarts", - "code":"14", - "des":"ModelArts uses Object Storage Service (OBS) to securely and reliably store data and models at low costs. For more details, see Object Storage Service Console Operation Gu", + "code":"13", + "des":"ModelArts uses Identity and Access Management (IAM) for authentication and authorization. For more information about IAM, see Identity and Access Management User Guide.Mo", "doc_type":"usermanual", "kw":"Related Services,Service Overview,User Guide", "search_title":"", @@ -264,7 +265,9 @@ { "prodname":"modelarts", "opensource":"true", - "documenttype":"usermanual" + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" } ], "title":"Related Services", @@ -272,9 +275,9 @@ }, { "uri":"modelarts_01_0007.html", - "node_id":"modelarts_01_0007.xml", + "node_id":"en-us_topic_0000001910059666.xml", "product_code":"modelarts", - "code":"15", + "code":"14", "des":"You can access ModelArts through the web-based management console or by using HTTPS-based application programming interfaces (APIs).Using the Management ConsoleModelArts ", "doc_type":"usermanual", "kw":"How Do I Access ModelArts?,Service Overview,User Guide", @@ -283,36 +286,19 @@ { "prodname":"modelarts", "opensource":"true", - "documenttype":"usermanual" + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" } ], "title":"How Do I Access ModelArts?", "githuburl":"" }, { - "uri":"modelarts_01_0021.html", - "node_id":"modelarts_01_0021.xml", + "uri":"modelarts_77_0143.html", + "node_id":"en-us_topic_0000001910010628.xml", "product_code":"modelarts", - "code":"16", - "des":"ModelArts is a one-stop AI development platform geared toward developers and data scientists of all skill levels. It enables you to rapidly build, train, and deploy model", - "doc_type":"usermanual", - "kw":"Billing,Service Overview,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual" - } - ], - "title":"Billing", - "githuburl":"" - }, - { - "uri":"modelarts_08_0000.html", - "node_id":"modelarts_08_0000.xml", - "product_code":"modelarts", - "code":"17", + "code":"15", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Preparations", @@ -320,10 +306,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Preparations", @@ -331,10 +315,10 @@ }, { "uri":"modelarts_08_0007.html", - "node_id":"modelarts_08_0007.xml", + "node_id":"en-us_topic_0000001910055378.xml", "product_code":"modelarts", - "code":"18", - "des":"Certain ModelArts functions require access to Object Storage Service (OBS), Software Repository for Container (SWR), and Intelligent EdgeFabric (IEF). Before using ModelA", + "code":"16", + "des":"Exposed ModelArts functions are controlled through IAM permissions. For example, if you as an IAM user need to create a training job on ModelArts, you must have the model", "doc_type":"usermanual", "kw":"Configuring Access Authorization (Global Configuration),Preparations,User Guide", "search_title":"", @@ -343,8 +327,8 @@ "prodname":"modelarts", "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"Yes", + "IsMulti":"Yes" } ], "title":"Configuring Access Authorization (Global Configuration)", @@ -352,10 +336,10 @@ }, { "uri":"modelarts_08_0003.html", - "node_id":"modelarts_08_0003.xml", + "node_id":"en-us_topic_0000001910055374.xml", "product_code":"modelarts", - "code":"19", - "des":"ModelArts uses OBS to store data, and backs up and takes snapshots for models, achieving secure, reliable storage at low costs. Before using ModelArts, create an OBS buck", + "code":"17", + "des":"ModelArts uses OBS to store data and model backups and snapshots, achieving secure, reliable, and low-cost storage. Before using ModelArts, create an OBS bucket and folde", "doc_type":"usermanual", "kw":"Creating an OBS Bucket,Preparations,User Guide", "search_title":"", @@ -364,39 +348,18 @@ "prodname":"modelarts", "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"Yes", + "IsMulti":"Yes" } ], "title":"Creating an OBS Bucket", "githuburl":"" }, - { - "uri":"modelarts_08_0008.html", - "node_id":"modelarts_08_0008.xml", - "product_code":"modelarts", - "code":"20", - "des":"If the domain name of a region can be resolved through the public network, skip in this section. If the domain name of a region cannot be resolved through the public netw", - "doc_type":"usermanual", - "kw":"(Optional) Configuring Mapping Between Domain Names and IP Addresses,Preparations,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"(Optional) Configuring Mapping Between Domain Names and IP Addresses", - "githuburl":"" - }, { "uri":"modelarts_21_0000.html", - "node_id":"modelarts_21_0000.xml", + "node_id":"en-us_topic_0000001914882052.xml", "product_code":"modelarts", - "code":"21", + "code":"18", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"ExeML", @@ -404,10 +367,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"ExeML", @@ -415,9 +376,9 @@ }, { "uri":"modelarts_21_0001.html", - "node_id":"modelarts_21_0001.xml", + "node_id":"en-us_topic_0000001915041988.xml", "product_code":"modelarts", - "code":"22", + "code":"19", "des":"ModelArts ExeML is a customized code-free model development tool that helps you start codeless AI application development with high flexibility. ExeML automates model des", "doc_type":"usermanual", "kw":"Introduction to ExeML,ExeML,User Guide", @@ -425,10 +386,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Introduction to ExeML", @@ -436,9 +395,9 @@ }, { "uri":"modelarts_21_0002.html", - "node_id":"modelarts_21_0002.xml", + "node_id":"en-us_topic_0000001946441125.xml", "product_code":"modelarts", - "code":"23", + "code":"20", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Image Classification", @@ -446,10 +405,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Image Classification", @@ -457,9 +414,9 @@ }, { "uri":"modelarts_21_0003.html", - "node_id":"modelarts_21_0003.xml", + "node_id":"en-us_topic_0000001914882056.xml", "product_code":"modelarts", - "code":"24", + "code":"21", "des":"Before using ModelArts ExeML to build a model, upload data to an OBS bucket.This operation uses the OBS console to upload data.Perform the following operations to import ", "doc_type":"usermanual", "kw":"Preparing Data,Image Classification,User Guide", @@ -467,10 +424,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Preparing Data", @@ -478,9 +433,9 @@ }, { "uri":"modelarts_21_0004.html", - "node_id":"modelarts_21_0004.xml", + "node_id":"en-us_topic_0000001915041992.xml", "product_code":"modelarts", - "code":"25", + "code":"22", "des":"ModelArts ExeML supports image classification and object detection projects. You can create any of them based on your needs. Perform the following operations to create an", "doc_type":"usermanual", "kw":"Creating a Project,Image Classification,User Guide", @@ -488,10 +443,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Creating a Project", @@ -499,9 +452,9 @@ }, { "uri":"modelarts_21_0005.html", - "node_id":"modelarts_21_0005.xml", + "node_id":"en-us_topic_0000001946441129.xml", "product_code":"modelarts", - "code":"26", + "code":"23", "des":"Model training requires a large number of labeled images. Therefore, before model training, add labels to the images that are not labeled. ModelArts allows you to add lab", "doc_type":"usermanual", "kw":"Labeling Data,Image Classification,User Guide", @@ -509,10 +462,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Labeling Data", @@ -520,9 +471,9 @@ }, { "uri":"modelarts_21_0006.html", - "node_id":"modelarts_21_0006.xml", + "node_id":"en-us_topic_0000001914882060.xml", "product_code":"modelarts", - "code":"27", + "code":"24", "des":"After labeling the images, you can train a model. You can perform model training to obtain the required image classification model. Training images must be classified int", "doc_type":"usermanual", "kw":"Training a Model,Image Classification,User Guide", @@ -530,10 +481,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Training a Model", @@ -541,9 +490,9 @@ }, { "uri":"modelarts_21_0007.html", - "node_id":"modelarts_21_0007.xml", + "node_id":"en-us_topic_0000001915041996.xml", "product_code":"modelarts", - "code":"28", + "code":"25", "des":"You can deploy a model as a real-time service that provides a real-time test UI and monitoring capabilities. After model training is complete, you can deploy a version wi", "doc_type":"usermanual", "kw":"Deploying a Model as a Service,Image Classification,User Guide", @@ -551,10 +500,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Deploying a Model as a Service", @@ -562,9 +509,9 @@ }, { "uri":"modelarts_21_0008.html", - "node_id":"modelarts_21_0008.xml", + "node_id":"en-us_topic_0000001946441133.xml", "product_code":"modelarts", - "code":"29", + "code":"26", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Object Detection", @@ -572,10 +519,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Object Detection", @@ -583,9 +528,9 @@ }, { "uri":"modelarts_21_0009.html", - "node_id":"modelarts_21_0009.xml", + "node_id":"en-us_topic_0000001914882064.xml", "product_code":"modelarts", - "code":"30", + "code":"27", "des":"Before using ModelArts ExeML to build a model, upload data to an OBS bucket.This operation uses the OBS console to upload data.Perform the following operations to import ", "doc_type":"usermanual", "kw":"Preparing Data,Object Detection,User Guide", @@ -593,10 +538,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Preparing Data", @@ -604,9 +547,9 @@ }, { "uri":"modelarts_21_0010.html", - "node_id":"modelarts_21_0010.xml", + "node_id":"en-us_topic_0000001915042000.xml", "product_code":"modelarts", - "code":"31", + "code":"28", "des":"ModelArts ExeML supports image classification and object detection projects. You can create any of them based on your needs. Perform the following operations to create an", "doc_type":"usermanual", "kw":"Creating a Project,Object Detection,User Guide", @@ -614,10 +557,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Creating a Project", @@ -625,9 +566,9 @@ }, { "uri":"modelarts_21_0011.html", - "node_id":"modelarts_21_0011.xml", + "node_id":"en-us_topic_0000001946441137.xml", "product_code":"modelarts", - "code":"32", + "code":"29", "des":"Before data labeling, consider how to design labels. The labels must correspond to the distinct characteristics of the detected images and are easy to identify (the detec", "doc_type":"usermanual", "kw":"Labeling Data,Object Detection,User Guide", @@ -635,10 +576,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Labeling Data", @@ -646,9 +585,9 @@ }, { "uri":"modelarts_21_0012.html", - "node_id":"modelarts_21_0012.xml", + "node_id":"en-us_topic_0000001914882068.xml", "product_code":"modelarts", - "code":"33", + "code":"30", "des":"After labeling the images, perform auto training to obtain an appropriate model version.On the ExeML page, click the name of the project that is successfully created. The", "doc_type":"usermanual", "kw":"Training a Model,Object Detection,User Guide", @@ -656,10 +595,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Training a Model", @@ -667,9 +604,9 @@ }, { "uri":"modelarts_21_0013.html", - "node_id":"modelarts_21_0013.xml", + "node_id":"en-us_topic_0000001915042004.xml", "product_code":"modelarts", - "code":"34", + "code":"31", "des":"You can deploy a model as a real-time service that provides a real-time test UI and monitoring capabilities. After the model is trained, you can deploy a Completed versio", "doc_type":"usermanual", "kw":"Deploying a Model as a Service,Object Detection,User Guide", @@ -677,10 +614,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Deploying a Model as a Service", @@ -688,9 +623,9 @@ }, { "uri":"modelarts_21_0014.html", - "node_id":"modelarts_21_0014.xml", + "node_id":"en-us_topic_0000001946441141.xml", "product_code":"modelarts", - "code":"35", + "code":"32", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Predictive Analytics", @@ -698,10 +633,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Predictive Analytics", @@ -709,9 +642,9 @@ }, { "uri":"modelarts_21_0015.html", - "node_id":"modelarts_21_0015.xml", + "node_id":"en-us_topic_0000001914882072.xml", "product_code":"modelarts", - "code":"36", + "code":"33", "des":"Before using ModelArts to build a predictive analytics model, upload data to OBS.This operation uses the OBS client to upload data. For more information about how to crea", "doc_type":"usermanual", "kw":"Preparing Data,Predictive Analytics,User Guide", @@ -719,10 +652,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Preparing Data", @@ -730,9 +661,9 @@ }, { "uri":"modelarts_21_0016.html", - "node_id":"modelarts_21_0016.xml", + "node_id":"en-us_topic_0000001915042008.xml", "product_code":"modelarts", - "code":"37", + "code":"34", "des":"ModelArts ExeML supports image classification, and object detection projects. You can create any of them based on your needs. Perform the following operations to create a", "doc_type":"usermanual", "kw":"Creating a Project,Predictive Analytics,User Guide", @@ -740,10 +671,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Creating a Project", @@ -751,9 +680,9 @@ }, { "uri":"modelarts_21_0017.html", - "node_id":"modelarts_21_0017.xml", + "node_id":"en-us_topic_0000001946441145.xml", "product_code":"modelarts", - "code":"38", + "code":"35", "des":"After creating a predictive analytics project, select a label column and its data type. On the Label Data tab page, you can preview data and select the label column and i", "doc_type":"usermanual", "kw":"Selecting a Label Column,Predictive Analytics,User Guide", @@ -761,10 +690,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Selecting a Label Column", @@ -772,9 +699,9 @@ }, { "uri":"modelarts_21_0018.html", - "node_id":"modelarts_21_0018.xml", + "node_id":"en-us_topic_0000001914882076.xml", "product_code":"modelarts", - "code":"39", + "code":"36", "des":"After the data is labeled, train a model for predictive analytics. You can publish the model as a real-time inference service.On the ExeML page, click the name of the pro", "doc_type":"usermanual", "kw":"Training a Model,Predictive Analytics,User Guide", @@ -782,10 +709,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Training a Model", @@ -793,9 +718,9 @@ }, { "uri":"modelarts_21_0019.html", - "node_id":"modelarts_21_0019.xml", + "node_id":"en-us_topic_0000001915042012.xml", "product_code":"modelarts", - "code":"40", + "code":"37", "des":"You can deploy a model as a real-time service that provides a real-time test UI and monitoring capabilities. After the model is trained, you can deploy a Successful versi", "doc_type":"usermanual", "kw":"Deploying a Model as a Service,Predictive Analytics,User Guide", @@ -803,10 +728,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Deploying a Model as a Service", @@ -814,9 +737,9 @@ }, { "uri":"modelarts_21_0030.html", - "node_id":"modelarts_21_0030.xml", + "node_id":"en-us_topic_0000001946441149.xml", "product_code":"modelarts", - "code":"41", + "code":"38", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Tips", @@ -824,10 +747,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Tips", @@ -835,9 +756,9 @@ }, { "uri":"modelarts_21_0031.html", - "node_id":"modelarts_21_0031.xml", + "node_id":"en-us_topic_0000001914882084.xml", "product_code":"modelarts", - "code":"42", + "code":"39", "des":"When creating a project, select a training data path. This section describes how to quickly create an OBS bucket and folder when you select the training data path.On the ", "doc_type":"usermanual", "kw":"How Do I Quickly Create an OBS Bucket and a Folder When Creating a Project?,Tips,User Guide", @@ -845,10 +766,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"How Do I Quickly Create an OBS Bucket and a Folder When Creating a Project?", @@ -856,9 +775,9 @@ }, { "uri":"modelarts_21_0032.html", - "node_id":"modelarts_21_0032.xml", + "node_id":"en-us_topic_0000001915042016.xml", "product_code":"modelarts", - "code":"43", + "code":"40", "des":"To add data for an existing project, perform the following operations. The operations described in this section apply only to object detection and image classification pr", "doc_type":"usermanual", "kw":"How Do I View the Added Data in an ExeML Project?,Tips,User Guide", @@ -866,10 +785,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"How Do I View the Added Data in an ExeML Project?", @@ -877,9 +794,9 @@ }, { "uri":"modelarts_21_0033.html", - "node_id":"modelarts_21_0033.xml", + "node_id":"en-us_topic_0000001946441153.xml", "product_code":"modelarts", - "code":"44", + "code":"41", "des":"Each round of training generates a training version in an ExeML project. If a training result is unsatisfactory (for example, if the precision is not good enough), you ca", "doc_type":"usermanual", "kw":"How Do I Perform Incremental Training in an ExeML Project?,Tips,User Guide", @@ -887,10 +804,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"How Do I Perform Incremental Training in an ExeML Project?", @@ -898,9 +813,9 @@ }, { "uri":"modelarts_21_0034.html", - "node_id":"modelarts_21_0034.xml", + "node_id":"en-us_topic_0000001914882088.xml", "product_code":"modelarts", - "code":"45", + "code":"42", "des":"For an ExeML project, after the model training is complete, the generated model is automatically displayed on the AI Application Management > AI Applications page. The mo", "doc_type":"usermanual", "kw":"Where Are Models Generated by ExeML Stored? What Other Operations Are Supported?,Tips,User Guide", @@ -908,20 +823,18 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Where Are Models Generated by ExeML Stored? What Other Operations Are Supported?", "githuburl":"" }, { - "uri":"modelarts_23_0002.html", - "node_id":"modelarts_23_0002.xml", + "uri":"modelarts_77_0146.html", + "node_id":"en-us_topic_0000001909850636.xml", "product_code":"modelarts", - "code":"46", + "code":"43", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Data Management", @@ -929,272 +842,132 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Data Management", "githuburl":"" }, { - "uri":"modelarts_23_0003.html", - "node_id":"modelarts_23_0003.xml", + "uri":"modelarts_88_0146.html", + "node_id":"en-us_topic_0000001910010616.xml", "product_code":"modelarts", - "code":"47", - "des":"In ModelArts, you can import and label data on the Data Management page to prepare for model building. ModelArts uses datasets as the basis for model development or train", + "code":"44", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", - "kw":"Introduction to Data Management,Data Management,User Guide", + "kw":"Data Preparation and Analysis", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], - "title":"Introduction to Data Management", + "title":"Data Preparation and Analysis", "githuburl":"" }, { - "uri":"modelarts_23_0004.html", - "node_id":"modelarts_23_0004.xml", + "uri":"dataprepare-modelarts-0001.html", + "node_id":"en-us_topic_0000001943972205.xml", "product_code":"modelarts", - "code":"48", - "des":"To manage data using ModelArts, you need to create a dataset first. Then you can perform operations on the dataset, such as labeling data, importing data, and publishing ", + "code":"45", + "des":"The driving forces behind AI are computing power, algorithms, and data. Data quality affects model precision. Generally, a large amount of high-quality data is more likel", "doc_type":"usermanual", - "kw":"Creating a Dataset,Data Management,User Guide", + "kw":"Data Preparation,Data Preparation and Analysis,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" + } + ], + "title":"Data Preparation", + "githuburl":"" + }, + { + "uri":"dataprepare-modelarts-0004.html", + "node_id":"en-us_topic_0000001910013004.xml", + "product_code":"modelarts", + "code":"46", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Creating a Dataset", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" } ], "title":"Creating a Dataset", "githuburl":"" }, { - "uri":"modelarts_23_0010.html", - "node_id":"modelarts_23_0010.xml", + "uri":"dataprepare-modelarts-0005.html", + "node_id":"en-us_topic_0000001909852992.xml", + "product_code":"modelarts", + "code":"47", + "des":"ModelArts supports the following types of datasets:Images: in .jpg, .png, .jpeg, or .bmp format for image classification, image segmentation, and object detectionAudio: i", + "doc_type":"usermanual", + "kw":"Dataset Overview,Creating a Dataset,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Dataset Overview", + "githuburl":"" + }, + { + "uri":"dataprepare-modelarts-0006.html", + "node_id":"en-us_topic_0000001909852996.xml", + "product_code":"modelarts", + "code":"48", + "des":"Before using ModelArts to manage data, create a dataset. Then, you can perform operations on the dataset, such as labeling data, importing data, and publishing the datase", + "doc_type":"usermanual", + "kw":"Creating a Dataset,Creating a Dataset,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Creating a Dataset", + "githuburl":"" + }, + { + "uri":"dataprepare-modelarts-0035.html", + "node_id":"en-us_topic_0000001909852968.xml", "product_code":"modelarts", "code":"49", - "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "des":"The basic information of a created dataset can be modified to keep pace with service changes.A created dataset is available.Log in to the ModelArts management console. In", "doc_type":"usermanual", - "kw":"Labeling Data", + "kw":"Modifying a Dataset,Creating a Dataset,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Labeling Data", + "title":"Modifying a Dataset", "githuburl":"" }, { - "uri":"modelarts_23_0011.html", - "node_id":"modelarts_23_0011.xml", + "uri":"dataprepare-modelarts-0007.html", + "node_id":"en-us_topic_0000001943972213.xml", "product_code":"modelarts", "code":"50", - "des":"Model training uses a large number of labeled images. Therefore, before the model training, add labels to the images that are not labeled. You can add labels to images by", - "doc_type":"usermanual", - "kw":"Image Classification,Labeling Data,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Image Classification", - "githuburl":"" - }, - { - "uri":"modelarts_23_0012.html", - "node_id":"modelarts_23_0012.xml", - "product_code":"modelarts", - "code":"51", - "des":"Training a model uses a large number of labeled images. Therefore, label images before the model training. You can add labels to images by manual labeling or auto labelin", - "doc_type":"usermanual", - "kw":"Object Detection,Labeling Data,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Object Detection", - "githuburl":"" - }, - { - "uri":"modelarts_23_0013.html", - "node_id":"modelarts_23_0013.xml", - "product_code":"modelarts", - "code":"52", - "des":"Model training requires a large amount of labeled data. Therefore, before the model training, add labels to the files that are not labeled. In addition, you can modify, d", - "doc_type":"usermanual", - "kw":"Text Classification,Labeling Data,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Text Classification", - "githuburl":"" - }, - { - "uri":"modelarts_23_0014.html", - "node_id":"modelarts_23_0014.xml", - "product_code":"modelarts", - "code":"53", - "des":"Named entity recognition assigns labels to named entities in text, such as time and locations. Before labeling, you need to understand the following:A label name can cont", - "doc_type":"usermanual", - "kw":"Named Entity Recognition,Labeling Data,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Named Entity Recognition", - "githuburl":"" - }, - { - "uri":"modelarts_23_0211.html", - "node_id":"modelarts_23_0211.xml", - "product_code":"modelarts", - "code":"54", - "des":"Triplet labeling is suitable for scenarios where structured information, such as subjects, predicates, and objects, needs to be labeled in statements. With this function,", - "doc_type":"usermanual", - "kw":"Text Triplet,Labeling Data,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Text Triplet", - "githuburl":"" - }, - { - "uri":"modelarts_23_0015.html", - "node_id":"modelarts_23_0015.xml", - "product_code":"modelarts", - "code":"55", - "des":"Model training requires a large amount of labeled data. Therefore, before the model training, label the unlabeled audio files. ModelArts enables you to label audio files ", - "doc_type":"usermanual", - "kw":"Sound Classification,Labeling Data,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Sound Classification", - "githuburl":"" - }, - { - "uri":"modelarts_23_0016.html", - "node_id":"modelarts_23_0016.xml", - "product_code":"modelarts", - "code":"56", - "des":"Model training requires a large amount of labeled data. Therefore, before the model training, label the unlabeled audio files. ModelArts enables you to label audio files ", - "doc_type":"usermanual", - "kw":"Speech Labeling,Labeling Data,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Speech Labeling", - "githuburl":"" - }, - { - "uri":"modelarts_23_0017.html", - "node_id":"modelarts_23_0017.xml", - "product_code":"modelarts", - "code":"57", - "des":"Model training requires a large amount of labeled data. Therefore, before the model training, label the unlabeled audio files. ModelArts enables you to label audio files.", - "doc_type":"usermanual", - "kw":"Speech Paragraph Labeling,Labeling Data,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Speech Paragraph Labeling", - "githuburl":"" - }, - { - "uri":"modelarts_23_0282.html", - "node_id":"modelarts_23_0282.xml", - "product_code":"modelarts", - "code":"58", - "des":"Model training requires a large amount of labeled video data. Therefore, before the model training, label the unlabeled video files. ModelArts enables you to label video ", - "doc_type":"usermanual", - "kw":"Video Labeling,Labeling Data,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Video Labeling", - "githuburl":"" - }, - { - "uri":"modelarts_23_0005.html", - "node_id":"modelarts_23_0005.xml", - "product_code":"modelarts", - "code":"59", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Importing Data", @@ -1203,208 +976,1279 @@ { "prodname":"modelarts", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Importing Data", "githuburl":"" }, { - "uri":"modelarts_23_0006.html", - "node_id":"modelarts_23_0006.xml", + "uri":"dataprepare-modelarts-0008.html", + "node_id":"en-us_topic_0000001910012996.xml", "product_code":"modelarts", - "code":"60", - "des":"After a dataset is created, you can directly synchronize data from the dataset. Alternatively, you can import more data by importing the dataset. Data can be imported fro", + "code":"51", + "des":"After a dataset is created, you can import more data. ModelArts allows you to import data from different data sources.Importing Data from OBSImporting Data from Local Fil", "doc_type":"usermanual", - "kw":"Import Operation,Importing Data,User Guide", + "kw":"Introduction to Data Importing,Importing Data,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Import Operation", + "title":"Introduction to Data Importing", "githuburl":"" }, { - "uri":"modelarts_23_0008.html", - "node_id":"modelarts_23_0008.xml", + "uri":"dataprepare-modelarts-0010.html", + "node_id":"en-us_topic_0000001910013000.xml", "product_code":"modelarts", - "code":"61", - "des":"When a dataset is imported, the data storage directory and file name must comply with the ModelArts specifications if the data to be used is stored in OBS.Only the follow", + "code":"52", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", - "kw":"Specifications for Importing Data from an OBS Directory,Importing Data,User Guide", + "kw":"Importing Data from OBS", "search_title":"", "metedata":[ { "prodname":"modelarts", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" + } + ], + "title":"Importing Data from OBS", + "githuburl":"" + }, + { + "uri":"dataprepare-modelarts-0011.html", + "node_id":"en-us_topic_0000001943972209.xml", + "product_code":"modelarts", + "code":"53", + "des":"You can import data from OBS through an OBS path or a manifest file.OBS path: indicates that the dataset to be imported has been stored in an OBS path. In this case, sele", + "doc_type":"usermanual", + "kw":"Introduction to Importing Data from OBS,Importing Data from OBS,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Introduction to Importing Data from OBS", + "githuburl":"" + }, + { + "uri":"dataprepare-modelarts-0012.html", + "node_id":"en-us_topic_0000001943972217.xml", + "product_code":"modelarts", + "code":"54", + "des":"You have created a dataset.You have stored the data to be imported in OBS. You have stored the manifest file in OBS.The OBS bucket and ModelArts are in the same region an", + "doc_type":"usermanual", + "kw":"Importing Data from an OBS Path,Importing Data from OBS,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Importing Data from an OBS Path", + "githuburl":"" + }, + { + "uri":"dataprepare-modelarts-0013.html", + "node_id":"en-us_topic_0000001910012960.xml", + "product_code":"modelarts", + "code":"55", + "des":"When importing data from OBS, the data storage directory and file name must comply with the ModelArts specifications.Only the following labeling types of data can be impo", + "doc_type":"usermanual", + "kw":"Specifications for Importing Data from an OBS Directory,Importing Data from OBS,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" } ], "title":"Specifications for Importing Data from an OBS Directory", "githuburl":"" }, { - "uri":"modelarts_23_0009.html", - "node_id":"modelarts_23_0009.xml", + "uri":"dataprepare-modelarts-0014.html", + "node_id":"en-us_topic_0000001910012992.xml", "product_code":"modelarts", - "code":"62", - "des":"The manifest file defines the mapping between labeling objects and content. The Manifest file import mode means that the manifest file is used for dataset import. The man", + "code":"56", + "des":"You have created a dataset.You have stored the data to be imported in OBS. You have stored the manifest file in OBS.The OBS bucket and ModelArts are in the same region an", "doc_type":"usermanual", - "kw":"Specifications for Importing the Manifest File,Importing Data,User Guide", + "kw":"Importing a Manifest File,Importing Data from OBS,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Specifications for Importing the Manifest File", + "title":"Importing a Manifest File", "githuburl":"" }, { - "uri":"modelarts_23_0214.html", - "node_id":"modelarts_23_0214.xml", + "uri":"dataprepare-modelarts-0015.html", + "node_id":"en-us_topic_0000001910012964.xml", "product_code":"modelarts", - "code":"63", - "des":"A dataset includes labeled and unlabeled data. You can select images or filter data based on the filter criteria and export to a new dataset or the specified OBS director", + "code":"57", + "des":"The manifest file defines the mapping between labeled objects and content. The manifest file import mode means that the manifest file is used for dataset import. The mani", "doc_type":"usermanual", - "kw":"Exporting Data,Data Management,User Guide", + "kw":"Specifications for Importing a Manifest File,Importing Data from OBS,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" + } + ], + "title":"Specifications for Importing a Manifest File", + "githuburl":"" + }, + { + "uri":"dataprepare-modelarts-0019.html", + "node_id":"en-us_topic_0000001943972197.xml", + "product_code":"modelarts", + "code":"58", + "des":"You have created a dataset.You have created an OBS bucket. The OBS bucket and ModelArts are in the same region and you can operate the bucket.Both file and table data can", + "doc_type":"usermanual", + "kw":"Importing Data from Local Files,Importing Data,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Importing Data from Local Files", + "githuburl":"" + }, + { + "uri":"dataprepare-modelarts-0020.html", + "node_id":"en-us_topic_0000001909852972.xml", + "product_code":"modelarts", + "code":"59", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Data Analysis and Preview", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Data Analysis and Preview", + "githuburl":"" + }, + { + "uri":"dataprepare-modelarts-0021.html", + "node_id":"en-us_topic_0000001943972177.xml", + "product_code":"modelarts", + "code":"60", + "des":"After data is collected and imported, the data cannot directly meet the training requirements. Process data during R&D to ensure data quality and prevent negative impact ", + "doc_type":"usermanual", + "kw":"Processing Data,Data Analysis and Preview,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Processing Data", + "githuburl":"" + }, + { + "uri":"dataprepare-modelarts-0022.html", + "node_id":"en-us_topic_0000001909852984.xml", + "product_code":"modelarts", + "code":"61", + "des":"To improve the precision of auto labeling algorithms, you can evenly label multiple classes. ModelArts provides built-in grouping algorithms. You can enable auto grouping", + "doc_type":"usermanual", + "kw":"Auto Grouping,Data Analysis and Preview,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Auto Grouping", + "githuburl":"" + }, + { + "uri":"dataprepare-modelarts-0023.html", + "node_id":"en-us_topic_0000001910012988.xml", + "product_code":"modelarts", + "code":"62", + "des":"On the Dashboard tab page of the dataset, the summary of the dataset is displayed by default. In the upper right corner of the page, click Label. The dataset details page", + "doc_type":"usermanual", + "kw":"Data Filtering,Data Analysis and Preview,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Data Filtering", + "githuburl":"" + }, + { + "uri":"dataprepare-modelarts-0024.html", + "node_id":"en-us_topic_0000001910012980.xml", + "product_code":"modelarts", + "code":"63", + "des":"Images or target bounding boxes are analyzed based on image features, such as blurs and brightness to draw visualized curves to help process datasets.You can also select ", + "doc_type":"usermanual", + "kw":"Data Feature Analysis,Data Analysis and Preview,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Data Feature Analysis", + "githuburl":"" + }, + { + "uri":"dataprepare-modelarts-0025.html", + "node_id":"en-us_topic_0000001943972173.xml", + "product_code":"modelarts", + "code":"64", + "des":"Model training requires a large amount of labeled data. Therefore, before training a model, label data. You can create a manual labeling job labeled by one person or by a", + "doc_type":"usermanual", + "kw":"Labeling Data,Data Preparation and Analysis,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Labeling Data", + "githuburl":"" + }, + { + "uri":"dataprepare-modelarts-0026.html", + "node_id":"en-us_topic_0000001910012984.xml", + "product_code":"modelarts", + "code":"65", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Publishing Data", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Publishing Data", + "githuburl":"" + }, + { + "uri":"dataprepare-modelarts-0027.html", + "node_id":"en-us_topic_0000001909852976.xml", + "product_code":"modelarts", + "code":"66", + "des":"ModelArts distinguishes data of the same source according to versions processed or labeled at different time, which facilitates the selection of dataset versions for subs", + "doc_type":"usermanual", + "kw":"Introduction to Data Publishing,Publishing Data,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Introduction to Data Publishing", + "githuburl":"" + }, + { + "uri":"dataprepare-modelarts-0028.html", + "node_id":"en-us_topic_0000001943972185.xml", + "product_code":"modelarts", + "code":"67", + "des":"Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Datasets.Locate the row containing the target dataset and click P", + "doc_type":"usermanual", + "kw":"Publishing a Data Version,Publishing Data,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Publishing a Data Version", + "githuburl":"" + }, + { + "uri":"dataprepare-modelarts-0029.html", + "node_id":"en-us_topic_0000001909852988.xml", + "product_code":"modelarts", + "code":"68", + "des":"During data preparation, you can publish data into multiple versions for dataset management. You can view version updates, set the current version, and delete versions.Lo", + "doc_type":"usermanual", + "kw":"Managing Data Versions,Publishing Data,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Managing Data Versions", + "githuburl":"" + }, + { + "uri":"dataprepare-modelarts-0030.html", + "node_id":"en-us_topic_0000001909852980.xml", + "product_code":"modelarts", + "code":"69", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Exporting Data", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" } ], "title":"Exporting Data", "githuburl":"" }, { - "uri":"modelarts_23_0020.html", - "node_id":"modelarts_23_0020.xml", + "uri":"dataprepare-modelarts-0031.html", + "node_id":"en-us_topic_0000001943972193.xml", "product_code":"modelarts", - "code":"64", - "des":"For a created dataset, you can modify its basic information to match service changes.You have created a dataset.Log in to the ModelArts management console. In the left na", + "code":"70", + "des":"You can select data or filter data based on the filter criteria in a dataset and export to a new dataset or the specified OBS path. The historical export records can be v", "doc_type":"usermanual", - "kw":"Modifying a Dataset,Data Management,User Guide", + "kw":"Introduction to Exporting Data,Exporting Data,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Modifying a Dataset", + "title":"Introduction to Exporting Data", "githuburl":"" }, { - "uri":"modelarts_23_0018.html", - "node_id":"modelarts_23_0018.xml", + "uri":"dataprepare-modelarts-0032.html", + "node_id":"en-us_topic_0000001943972189.xml", "product_code":"modelarts", - "code":"65", - "des":"ModelArts distinguishes data of the same source according to versions labeled at different time, which facilitates the selection of dataset versions during subsequent mod", + "code":"71", + "des":"Log in to the ModelArts management console. In the left navigation pane, choose Data Management > Datasets.In the dataset list, select an image dataset and click the data", "doc_type":"usermanual", - "kw":"Publishing a Dataset,Data Management,User Guide", + "kw":"Exporting Data to a New Dataset,Exporting Data,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Publishing a Dataset", + "title":"Exporting Data to a New Dataset", "githuburl":"" }, { - "uri":"modelarts_23_0021.html", - "node_id":"modelarts_23_0021.xml", + "uri":"dataprepare-modelarts-0033.html", + "node_id":"en-us_topic_0000001943972201.xml", "product_code":"modelarts", - "code":"66", - "des":"If a dataset is no longer in use, you can delete it to release resources.After a dataset is deleted, if you need to delete the data in the dataset input and output paths ", + "code":"72", + "des":"Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Datasets.In the dataset list, select an image dataset and click t", "doc_type":"usermanual", - "kw":"Deleting a Dataset,Data Management,User Guide", + "kw":"Exporting Data to OBS,Exporting Data,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Deleting a Dataset", + "title":"Exporting Data to OBS", "githuburl":"" }, { - "uri":"modelarts_23_0019.html", - "node_id":"modelarts_23_0019.xml", + "uri":"modelarts_88_0147.html", + "node_id":"en-us_topic_0000001909850624.xml", "product_code":"modelarts", - "code":"67", - "des":"After labeling data, you can publish the dataset to multiple versions for management. For the published versions, you can view the dataset version updates, set the curren", + "code":"73", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", - "kw":"Managing Dataset Versions,Data Management,User Guide", + "kw":"Data Processing", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], - "title":"Managing Dataset Versions", + "title":"Data Processing", "githuburl":"" }, { - "uri":"modelarts_23_0223.html", - "node_id":"modelarts_23_0223.xml", + "uri":"dataprocess-modelarts-00001.html", + "node_id":"en-us_topic_0000001909852868.xml", "product_code":"modelarts", - "code":"68", - "des":"Only datasets of image classification and object detection types support the auto hard example detection function.In a dataset, labeled or unlabeled image data can be lab", + "code":"74", + "des":"ModelArts provides the data processing function to extract valuable and meaningful data from a large amount of disordered and difficult-to-understand data. After data is ", "doc_type":"usermanual", - "kw":"Confirming Hard Examples,Data Management,User Guide", + "kw":"Data Processing Overview,Data Processing,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "documenttype":"usermanual" + } + ], + "title":"Data Processing Overview", + "githuburl":"" + }, + { + "uri":"dataprocess-modelarts-00002.html", + "node_id":"en-us_topic_0000001943972061.xml", + "product_code":"modelarts", + "code":"75", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Description of Built-in Operators for Data Processing", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "documenttype":"usermanual" + } + ], + "title":"Description of Built-in Operators for Data Processing", + "githuburl":"" + }, + { + "uri":"dataprocess-modelarts-00003.html", + "node_id":"en-us_topic_0000001943972093.xml", + "product_code":"modelarts", + "code":"76", + "des":"ModelArts data validation uses the MetaValidation operator and supports the following image formats: JPG, JPEG, BMP, and PNG. The object detection scenario supports the X", + "doc_type":"usermanual", + "kw":"Data Validation,Description of Built-in Operators for Data Processing,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "documenttype":"usermanual" + } + ], + "title":"Data Validation", + "githuburl":"" + }, + { + "uri":"dataprocess-modelarts-00004.html", + "node_id":"en-us_topic_0000001943972089.xml", + "product_code":"modelarts", + "code":"77", + "des":"ModelArts data cleansing is implemented by the PCC operator. The dataset used for image classification or object detection may contain images that do not belong to the re", + "doc_type":"usermanual", + "kw":"Data Cleansing,Description of Built-in Operators for Data Processing,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "documenttype":"usermanual" + } + ], + "title":"Data Cleansing", + "githuburl":"" + }, + { + "uri":"dataprocess-modelarts-00005.html", + "node_id":"en-us_topic_0000001909852872.xml", + "product_code":"modelarts", + "code":"78", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Data Selection", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "documenttype":"usermanual" + } + ], + "title":"Data Selection", + "githuburl":"" + }, + { + "uri":"dataprocess-modelarts-00006.html", + "node_id":"en-us_topic_0000001943972069.xml", + "product_code":"modelarts", + "code":"79", + "des":"The SimDeduplication operator can implement image deduplication based on the similarity threshold you set. Image deduplication is a common method for image data processin", + "doc_type":"usermanual", + "kw":"Data Deduplication,Data Selection,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "documenttype":"usermanual" + } + ], + "title":"Data Deduplication", + "githuburl":"" + }, + { + "uri":"dataprocess-modelarts-00007.html", + "node_id":"en-us_topic_0000001910012872.xml", + "product_code":"modelarts", + "code":"80", + "des":"The data with the largest difference can be removed based on the preset proportion.The following two types of operator input are available:Datasets: Select a dataset and ", + "doc_type":"usermanual", + "kw":"Data Deredundancy,Data Selection,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "documenttype":"usermanual" + } + ], + "title":"Data Deredundancy", + "githuburl":"" + }, + { + "uri":"dataprocess-modelarts-00008.html", + "node_id":"en-us_topic_0000001943972065.xml", + "product_code":"modelarts", + "code":"81", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Data Augmentation", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "documenttype":"usermanual" + } + ], + "title":"Data Augmentation", + "githuburl":"" + }, + { + "uri":"dataprocess-modelarts-00009.html", + "node_id":"en-us_topic_0000001910012876.xml", + "product_code":"modelarts", + "code":"82", + "des":"Data augmentation is mainly used in scenarios where training data is insufficient or simulation is required. You can transform a labeled dataset to increase the number of", + "doc_type":"usermanual", + "kw":"Data Augmentation,Data Augmentation,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "documenttype":"usermanual" + } + ], + "title":"Data Augmentation", + "githuburl":"" + }, + { + "uri":"dataprocess-modelarts-00010.html", + "node_id":"en-us_topic_0000001910012880.xml", + "product_code":"modelarts", + "code":"83", + "des":"The image generation uses a generative adversarial network (GAN) to generate a new dataset with the existing dataset. A GAN is a network that contains a generator and dis", + "doc_type":"usermanual", + "kw":"Data Generation,Data Augmentation,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "documenttype":"usermanual" + } + ], + "title":"Data Generation", + "githuburl":"" + }, + { + "uri":"dataprocess-modelarts-00011.html", + "node_id":"en-us_topic_0000001909852876.xml", + "product_code":"modelarts", + "code":"84", + "des":"CycleGAN operator generates images for domain transfer based on CycleGAN, that is, converts one type of images into another, or converts samples in the X space into sampl", + "doc_type":"usermanual", + "kw":"Data Transfer Between Domains,Data Augmentation,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "documenttype":"usermanual" + } + ], + "title":"Data Transfer Between Domains", + "githuburl":"" + }, + { + "uri":"modelarts_88_0148.html", + "node_id":"en-us_topic_0000001943969825.xml", + "product_code":"modelarts", + "code":"85", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Data Labeling", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "documenttype":"usermanual", + "IsBot":"No" + } + ], + "title":"Data Labeling", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0002.html", + "node_id":"en-us_topic_0000001943986853.xml", + "product_code":"modelarts", + "code":"86", + "des":"Model training requires a large amount of labeled data. Therefore, before training a model, label data. ModelArts offers data labeling functions to assist with this proce", + "doc_type":"usermanual", + "kw":"Introduction to Data Labeling,Data Labeling,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" + } + ], + "title":"Introduction to Data Labeling", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0003.html", + "node_id":"en-us_topic_0000001910067682.xml", + "product_code":"modelarts", + "code":"87", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Manual Labeling", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Manual Labeling", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0004.html", + "node_id":"en-us_topic_0000001910027682.xml", + "product_code":"modelarts", + "code":"88", + "des":"Model training requires a large amount of labeled data. Therefore, before training a model, label data. You can create a manual labeling job labeled by one person or by a", + "doc_type":"usermanual", + "kw":"Creating a Labeling Job,Manual Labeling,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Creating a Labeling Job", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0005.html", + "node_id":"en-us_topic_0000001943986865.xml", + "product_code":"modelarts", + "code":"89", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Image Labeling", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Image Labeling", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0006.html", + "node_id":"en-us_topic_0000001910027658.xml", + "product_code":"modelarts", + "code":"90", + "des":"Training a model uses a large number of labeled images. Therefore, label images before the model training. You can add labels to images by manual labeling or auto labelin", + "doc_type":"usermanual", + "kw":"Image Classification,Image Labeling,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Image Classification", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0007.html", + "node_id":"en-us_topic_0000001943986893.xml", + "product_code":"modelarts", + "code":"91", + "des":"Training a model uses a large number of labeled images. Therefore, label images before the model training. You can add labels to images by manual labeling or auto labelin", + "doc_type":"usermanual", + "kw":"Object detection,Image Labeling,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Object detection", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0008.html", + "node_id":"en-us_topic_0000001910067674.xml", + "product_code":"modelarts", + "code":"92", + "des":"Training a model uses a large number of labeled images. Therefore, label images before the model training. You can label images on the ModelArts management console. Alter", + "doc_type":"usermanual", + "kw":"Image Segmentation,Image Labeling,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Image Segmentation", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0009.html", + "node_id":"en-us_topic_0000001910027654.xml", + "product_code":"modelarts", + "code":"93", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Text Labeling", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Text Labeling", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0010.html", + "node_id":"en-us_topic_0000001910067686.xml", + "product_code":"modelarts", + "code":"94", + "des":"Model training requires a large amount of labeled data. Therefore, before the model training, add labels to the files that are not labeled. In addition, you can modify, d", + "doc_type":"usermanual", + "kw":"Text classification,Text Labeling,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Text classification", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0011.html", + "node_id":"en-us_topic_0000001943986857.xml", + "product_code":"modelarts", + "code":"95", + "des":"Named entity recognition assigns labels to named entities in text, such as time and locations. Before labeling, pay attention to the following:A label name of a named ent", + "doc_type":"usermanual", + "kw":"Named Entity Recognition,Text Labeling,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Named Entity Recognition", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0012.html", + "node_id":"en-us_topic_0000001910067646.xml", + "product_code":"modelarts", + "code":"96", + "des":"Triplet labeling is suitable for scenarios where structured information, such as subjects, predicates, and objects, needs to be labeled in statements. With this function,", + "doc_type":"usermanual", + "kw":"Text Triplet,Text Labeling,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Text Triplet", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0013.html", + "node_id":"en-us_topic_0000001910067670.xml", + "product_code":"modelarts", + "code":"97", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Audio Labeling", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Audio Labeling", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0014.html", + "node_id":"en-us_topic_0000001943986877.xml", + "product_code":"modelarts", + "code":"98", + "des":"Model training requires a large amount of labeled data. Therefore, before the model training, label the unlabeled audio files. ModelArts enables you to label audio files ", + "doc_type":"usermanual", + "kw":"Sound classification,Audio Labeling,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Sound classification", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0015.html", + "node_id":"en-us_topic_0000001910027678.xml", + "product_code":"modelarts", + "code":"99", + "des":"Model training requires a large amount of labeled data. Therefore, before the model training, label the unlabeled audio files. ModelArts enables you to label audio files ", + "doc_type":"usermanual", + "kw":"Speech Labeling,Audio Labeling,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Speech Labeling", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0016.html", + "node_id":"en-us_topic_0000001910027666.xml", + "product_code":"modelarts", + "code":"100", + "des":"Model training requires a large amount of labeled data. Therefore, before the model training, label the unlabeled audio files. ModelArts enables you to label audio files.", + "doc_type":"usermanual", + "kw":"Speech Paragraph Labeling,Audio Labeling,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Speech Paragraph Labeling", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0017.html", + "node_id":"en-us_topic_0000001910027662.xml", + "product_code":"modelarts", + "code":"101", + "des":"Model training requires a large amount of labeled video data. Therefore, before the model training, label the unlabeled video files. ModelArts enables you to label video ", + "doc_type":"usermanual", + "kw":"Video Labeling,Manual Labeling,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Video Labeling", + "githuburl":"" + }, + { + "uri":"modelarts_23_0347.html", + "node_id":"en-us_topic_0000001943986869.xml", + "product_code":"modelarts", + "code":"102", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Viewing Labeling Jobs", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Viewing Labeling Jobs", + "githuburl":"" + }, + { + "uri":"modelarts_23_0348.html", + "node_id":"en-us_topic_0000001910027674.xml", + "product_code":"modelarts", + "code":"103", + "des":"On the ModelArts Data Labeling page, view your created labeling jobs in the My Creations tab.Log in to the ModelArts management console. In the navigation pane on the lef", + "doc_type":"usermanual", + "kw":"Viewing My Created Labeling Jobs,Viewing Labeling Jobs,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Viewing My Created Labeling Jobs", + "githuburl":"" + }, + { + "uri":"modelarts_23_0349.html", + "node_id":"en-us_topic_0000001910067658.xml", + "product_code":"modelarts", + "code":"104", + "des":"On the ModelArts Data Labeling page, view your participated labeling jobs on the My Participations tab page.Team labeling is enabled when a labeling job is created.Log in", + "doc_type":"usermanual", + "kw":"Viewing My Participated Labeling Jobs,Viewing Labeling Jobs,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Viewing My Participated Labeling Jobs", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0018.html", + "node_id":"en-us_topic_0000001910067662.xml", + "product_code":"modelarts", + "code":"105", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Auto Labeling", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Auto Labeling", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0019.html", + "node_id":"en-us_topic_0000001943986873.xml", + "product_code":"modelarts", + "code":"106", + "des":"In addition to manual labeling, ModelArts also provides the auto labeling function to quickly label data, reducing the labeling time by more than 70%. Auto labeling means", + "doc_type":"usermanual", + "kw":"Creating an Auto Labeling Job,Auto Labeling,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Creating an Auto Labeling Job", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0020.html", + "node_id":"en-us_topic_0000001910027646.xml", + "product_code":"modelarts", + "code":"107", + "des":"In a labeling task that processes a large amount of data, auto labeling results cannot be directly used for training because the labeled images are insufficient at the in", + "doc_type":"usermanual", + "kw":"Confirming Hard Examples,Auto Labeling,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" } ], "title":"Confirming Hard Examples", "githuburl":"" }, { - "uri":"modelarts_30_0000.html", - "node_id":"modelarts_30_0000.xml", + "uri":"datalabel-modelarts_0022.html", + "node_id":"en-us_topic_0000001910027670.xml", "product_code":"modelarts", - "code":"69", + "code":"108", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Team Labeling", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Team Labeling", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0023.html", + "node_id":"en-us_topic_0000001943986897.xml", + "product_code":"modelarts", + "code":"109", + "des":"Generally, a small data labeling job can be completed by an individual. However, team work is required to label a large dataset. ModelArts provides team labeling, allowin", + "doc_type":"usermanual", + "kw":"Team Labeling Overview,Team Labeling,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Team Labeling Overview", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0024.html", + "node_id":"en-us_topic_0000001910067666.xml", + "product_code":"modelarts", + "code":"110", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Creating and Managing Teams", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Creating and Managing Teams", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0025.html", + "node_id":"en-us_topic_0000001910067678.xml", + "product_code":"modelarts", + "code":"111", + "des":"Team labeling is managed in a unit of teams. To enable team labeling for a dataset, a team must be specified. Multiple members can be added to a team.An account can have ", + "doc_type":"usermanual", + "kw":"Managing Teams,Creating and Managing Teams,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Managing Teams", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0026.html", + "node_id":"en-us_topic_0000001910027690.xml", + "product_code":"modelarts", + "code":"112", + "des":"There is no member in a new team. You need to add members who will participate in a team labeling job.A maximum of 100 members can be added to a team. If there are more t", + "doc_type":"usermanual", + "kw":"Managing Team Members,Creating and Managing Teams,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Managing Team Members", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0027.html", + "node_id":"en-us_topic_0000001910027686.xml", + "product_code":"modelarts", + "code":"113", + "des":"If you enable team labeling when creating a labeling job and assign a team to label the dataset, the system creates a labeling job based on the team by default. After cre", + "doc_type":"usermanual", + "kw":"Creating a Team Labeling Job,Team Labeling,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Creating a Team Labeling Job", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0028.html", + "node_id":"en-us_topic_0000001910067654.xml", + "product_code":"modelarts", + "code":"114", + "des":"Typically, users label data in Data Management of the ModelArts console. Data Management provides data management capabilities such as dataset management, data labeling, ", + "doc_type":"usermanual", + "kw":"Logging In to ModelArts,Team Labeling,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Logging In to ModelArts", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0029.html", + "node_id":"en-us_topic_0000001910027650.xml", + "product_code":"modelarts", + "code":"115", + "des":"After logging in to the data labeling page on the management console, you can click the My Participations tab to view the assigned labeling job and click the job name to ", + "doc_type":"usermanual", + "kw":"Starting a Team Labeling Job,Team Labeling,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Starting a Team Labeling Job", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0030.html", + "node_id":"en-us_topic_0000001943986861.xml", + "product_code":"modelarts", + "code":"116", + "des":"After team labeling is complete, the reviewer can review the labeling result.Log in to the ModelArts management console. In the navigation pane, choose Data Management > ", + "doc_type":"usermanual", + "kw":"Reviewing Team Labeling Results,Team Labeling,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Reviewing Team Labeling Results", + "githuburl":"" + }, + { + "uri":"datalabel-modelarts_0031.html", + "node_id":"en-us_topic_0000001943986881.xml", + "product_code":"modelarts", + "code":"117", + "des":"Initiating acceptanceAfter team members complete data labeling, the labeling job creator can initiate acceptance to check labeling results. The acceptance can be initiate", + "doc_type":"usermanual", + "kw":"Accepting Team Labeling Results,Team Labeling,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Accepting Team Labeling Results", + "githuburl":"" + }, + { + "uri":"modelarts_30_0000.html", + "node_id":"en-us_topic_0000001915042020.xml", + "product_code":"modelarts", + "code":"118", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"DevEnviron (New)", @@ -1412,10 +2256,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"DevEnviron (New)", @@ -1423,9 +2265,9 @@ }, { "uri":"modelarts_30_0001.html", - "node_id":"modelarts_30_0001.xml", + "node_id":"en-us_topic_0000001799497120.xml", "product_code":"modelarts", - "code":"70", + "code":"119", "des":"This document describes the DevEnviron notebook functions of the new version.Software development is a process of reducing developer costs and improving development exper", "doc_type":"usermanual", "kw":"DevEnviron Overview,DevEnviron (New),User Guide", @@ -1442,16 +2284,18 @@ }, { "uri":"modelarts_30_0002.html", - "node_id":"modelarts_30_0002.xml", - "product_code":"", - "code":"71", + "node_id":"en-us_topic_0000001846056073.xml", + "product_code":"modelarts", + "code":"120", "des":"ModelArts provides flexible, open development environments. Select a development environment based on site requirements.In-cloud notebook that is out of the box, relievin", - "doc_type":"", + "doc_type":"usermanual", "kw":"DevEnviron Application Scenarios,DevEnviron (New),User Guide", "search_title":"", "metedata":[ { - + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" } ], "title":"DevEnviron Application Scenarios", @@ -1459,16 +2303,18 @@ }, { "uri":"modelarts_30_0003.html", - "node_id":"modelarts_30_0003.xml", - "product_code":"", - "code":"72", + "node_id":"en-us_topic_0000001799336772.xml", + "product_code":"modelarts", + "code":"121", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", - "doc_type":"", + "doc_type":"usermanual", "kw":"Managing Notebook Instances", "search_title":"", "metedata":[ { - + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" } ], "title":"Managing Notebook Instances", @@ -1476,16 +2322,18 @@ }, { "uri":"modelarts_30_0004.html", - "node_id":"modelarts_30_0004.xml", - "product_code":"", - "code":"73", + "node_id":"en-us_topic_0000001846136097.xml", + "product_code":"modelarts", + "code":"122", "des":"Before developing a model, create a notebook instance and access it for coding.Only running notebook instances can be accessed or stopped.A maximum of 10 notebook instanc", - "doc_type":"", + "doc_type":"usermanual", "kw":"Creating a Notebook Instance,Managing Notebook Instances,User Guide", "search_title":"", "metedata":[ { - + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" } ], "title":"Creating a Notebook Instance", @@ -1493,9 +2341,9 @@ }, { "uri":"modelarts_30_0005.html", - "node_id":"modelarts_30_0005.xml", + "node_id":"en-us_topic_0000001846055845.xml", "product_code":"modelarts", - "code":"74", + "code":"123", "des":"Access a notebook instance in the Running state for coding.The methods of accessing notebook instances vary depending on the AI engine based on which the instance was cre", "doc_type":"usermanual", "kw":"Accessing a Notebook Instance,Managing Notebook Instances,User Guide", @@ -1512,9 +2360,9 @@ }, { "uri":"modelarts_30_0006.html", - "node_id":"modelarts_30_0006.xml", + "node_id":"en-us_topic_0000001846055729.xml", "product_code":"modelarts", - "code":"75", + "code":"124", "des":"Stop the notebook instances that are not needed. You can also restart a stopped instance.Log in to the ModelArts management console. Choose DevEnviron > Notebook in the n", "doc_type":"usermanual", "kw":"Starting, Stopping, or Deleting a Notebook Instance,Managing Notebook Instances,User Guide", @@ -1531,16 +2379,18 @@ }, { "uri":"modelarts_30_0033.html", - "node_id":"modelarts_30_0033.xml", - "product_code":"", - "code":"76", + "node_id":"en-us_topic_0000001846136397.xml", + "product_code":"modelarts", + "code":"125", "des":"Storage varies depending on performance, usability, and cost. No storage media can cover all scenarios. Learning about in-cloud storage application scenarios for better u", - "doc_type":"", + "doc_type":"usermanual", "kw":"Selecting Storage in DevEnviron,Managing Notebook Instances,User Guide", "search_title":"", "metedata":[ { - + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" } ], "title":"Selecting Storage in DevEnviron", @@ -1548,16 +2398,18 @@ }, { "uri":"modelarts_30_0040.html", - "node_id":"modelarts_30_0040.xml", - "product_code":"", - "code":"77", + "node_id":"en-us_topic_0000001799336800.xml", + "product_code":"modelarts", + "code":"126", "des":"If a notebook instance uses an EVS disk for storage, the disk is mounted to /home/ma-user/work/ of the notebook container and the disk capacity can be expanded by up to 2", - "doc_type":"", + "doc_type":"usermanual", "kw":"Dynamically Expanding EVS Disk Capacity,Managing Notebook Instances,User Guide", "search_title":"", "metedata":[ { - + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" } ], "title":"Dynamically Expanding EVS Disk Capacity", @@ -1565,9 +2417,9 @@ }, { "uri":"modelarts_30_0023.html", - "node_id":"modelarts_30_0023.xml", + "node_id":"en-us_topic_0000001799496844.xml", "product_code":"modelarts", - "code":"78", + "code":"127", "des":"During the creation of a notebook instance, if you set a whitelist for remotely accessing it, you can change the IP addresses in the whitelist on the notebook instance de", "doc_type":"usermanual", "kw":"Changing an IP Address for Remotely Accessing a Notebook Instance,Managing Notebook Instances,User G", @@ -1584,9 +2436,9 @@ }, { "uri":"modelarts_30_0007.html", - "node_id":"modelarts_30_0007.xml", + "node_id":"en-us_topic_0000001846056241.xml", "product_code":"modelarts", - "code":"79", + "code":"128", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Using JupyterLab to Develop Models", @@ -1603,9 +2455,9 @@ }, { "uri":"modelarts_30_0009.html", - "node_id":"modelarts_30_0009.xml", + "node_id":"en-us_topic_0000001799337192.xml", "product_code":"modelarts", - "code":"80", + "code":"129", "des":"JupyterLab is the next-generation web-based interactive development environment of Jupyter Notebook, enabling you to compile notebooks, operate terminals, edit Markdown t", "doc_type":"usermanual", "kw":"JupyterLab Overview and Common Operations,Using JupyterLab to Develop Models,User Guide", @@ -1622,16 +2474,18 @@ }, { "uri":"modelarts_30_0041.html", - "node_id":"modelarts_30_0041.xml", - "product_code":"", - "code":"81", + "node_id":"en-us_topic_0000001846136233.xml", + "product_code":"modelarts", + "code":"130", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", - "doc_type":"", + "doc_type":"usermanual", "kw":"Uploading Files to JupyterLab", "search_title":"", "metedata":[ { - + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" } ], "title":"Uploading Files to JupyterLab", @@ -1639,16 +2493,18 @@ }, { "uri":"modelarts_30_0042.html", - "node_id":"modelarts_30_0042.xml", - "product_code":"", - "code":"82", + "node_id":"en-us_topic_0000001799337300.xml", + "product_code":"modelarts", + "code":"131", "des":"Easy and fast file uploading is a common requirement in AI development.Before the optimization, ModelArts only allowed local files not exceeding 100 MB to be directly upl", - "doc_type":"", + "doc_type":"usermanual", "kw":"Scenarios,Uploading Files to JupyterLab,User Guide", "search_title":"", "metedata":[ { - + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" } ], "title":"Scenarios", @@ -1656,16 +2512,18 @@ }, { "uri":"modelarts_30_0043.html", - "node_id":"modelarts_30_0043.xml", - "product_code":"", - "code":"83", + "node_id":"en-us_topic_0000001799496908.xml", + "product_code":"modelarts", + "code":"132", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", - "doc_type":"", + "doc_type":"usermanual", "kw":"Uploading Files from a Local Path to JupyterLab", "search_title":"", "metedata":[ { - + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" } ], "title":"Uploading Files from a Local Path to JupyterLab", @@ -1673,16 +2531,18 @@ }, { "uri":"modelarts_30_0044.html", - "node_id":"modelarts_30_0044.xml", - "product_code":"", - "code":"84", + "node_id":"en-us_topic_0000001846135997.xml", + "product_code":"modelarts", + "code":"133", "des":"JupyterLab provides multiple methods for uploading files.For a file that does not exceed 100 MB, directly upload it, and details such as the file size, upload progress, a", - "doc_type":"", + "doc_type":"usermanual", "kw":"Upload Scenarios and Entries,Uploading Files from a Local Path to JupyterLab,User Guide", "search_title":"", "metedata":[ { - + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" } ], "title":"Upload Scenarios and Entries", @@ -1690,16 +2550,18 @@ }, { "uri":"modelarts_30_0045.html", - "node_id":"modelarts_30_0045.xml", - "product_code":"", - "code":"85", + "node_id":"en-us_topic_0000001799336836.xml", + "product_code":"modelarts", + "code":"134", "des":"For a file not exceeding 100 MB, directly upload it to the target notebook instance. Detailed information, such as the file size, upload progress, and upload speed are di", - "doc_type":"", + "doc_type":"usermanual", "kw":"Uploading a Local File Less Than 100 MB to JupyterLab,Uploading Files from a Local Path to JupyterLa", "search_title":"", "metedata":[ { - + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" } ], "title":"Uploading a Local File Less Than 100 MB to JupyterLab", @@ -1707,16 +2569,18 @@ }, { "uri":"modelarts_30_0046.html", - "node_id":"modelarts_30_0046.xml", - "product_code":"", - "code":"86", + "node_id":"en-us_topic_0000001846136317.xml", + "product_code":"modelarts", + "code":"135", "des":"For a file that exceeds 100 MB but does not exceed 5 GB, upload the file to OBS (an object bucket or a parallel file system), and then download the file from OBS to the t", - "doc_type":"", + "doc_type":"usermanual", "kw":"Uploading a Local File with a Size Ranging from 100 MB to 5 GB to JupyterLab,Uploading Files from a ", "search_title":"", "metedata":[ { - + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" } ], "title":"Uploading a Local File with a Size Ranging from 100 MB to 5 GB to JupyterLab", @@ -1724,16 +2588,18 @@ }, { "uri":"modelarts_30_0047.html", - "node_id":"modelarts_30_0047.xml", - "product_code":"", - "code":"87", + "node_id":"en-us_topic_0000001846055525.xml", + "product_code":"modelarts", + "code":"136", "des":"A file exceeding 5 GB cannot be directly uploaded to JupyterLab.To upload files exceeding 5 GB, upload them to OBS. Then, call the ModelArts MoXing or SDK API in the targ", - "doc_type":"", + "doc_type":"usermanual", "kw":"Uploading a Local File Larger Than 5 GB to JupyterLab,Uploading Files from a Local Path to JupyterLa", "search_title":"", "metedata":[ { - + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" } ], "title":"Uploading a Local File Larger Than 5 GB to JupyterLab", @@ -1741,16 +2607,18 @@ }, { "uri":"modelarts_30_0048.html", - "node_id":"modelarts_30_0048.xml", - "product_code":"", - "code":"88", + "node_id":"en-us_topic_0000001846136217.xml", + "product_code":"modelarts", + "code":"137", "des":"Files can be cloned from a GitHub open-source repository to JupyterLab.Use JupyterLab to open a running notebook instance.Click in the navigation bar on the top of the J", - "doc_type":"", + "doc_type":"usermanual", "kw":"Cloning an open-source repository in GitHub,Uploading Files to JupyterLab,User Guide", "search_title":"", "metedata":[ { - + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" } ], "title":"Cloning an open-source repository in GitHub", @@ -1758,16 +2626,18 @@ }, { "uri":"modelarts_30_0049.html", - "node_id":"modelarts_30_0049.xml", - "product_code":"", - "code":"89", + "node_id":"en-us_topic_0000001799337000.xml", + "product_code":"modelarts", + "code":"138", "des":"In JupyterLab, you can download files from OBS to a notebook instance.Use JupyterLab to open a running notebook instance.Click in the navigation bar on the top of the Ju", - "doc_type":"", + "doc_type":"usermanual", "kw":"Uploading OBS Files to JupyterLab,Uploading Files to JupyterLab,User Guide", "search_title":"", "metedata":[ { - + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" } ], "title":"Uploading OBS Files to JupyterLab", @@ -1775,16 +2645,18 @@ }, { "uri":"modelarts_30_0050.html", - "node_id":"modelarts_30_0050.xml", - "product_code":"", - "code":"90", + "node_id":"en-us_topic_0000001846056185.xml", + "product_code":"modelarts", + "code":"139", "des":"Files can be downloaded through remote file addresses to JupyterLab.Method: Enter the URL of a remote file in the text box of a browser, and the file is directly download", - "doc_type":"", + "doc_type":"usermanual", "kw":"Uploading Remote Files to JupyterLab,Uploading Files to JupyterLab,User Guide", "search_title":"", "metedata":[ { - + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" } ], "title":"Uploading Remote Files to JupyterLab", @@ -1792,9 +2664,9 @@ }, { "uri":"modelarts_30_0011.html", - "node_id":"modelarts_30_0011.xml", + "node_id":"en-us_topic_0000001799336972.xml", "product_code":"modelarts", - "code":"91", + "code":"140", "des":"Files created in JupyterLab can be downloaded to a local path. The operations for downloading a file are the same, regardless of whether the created notebook instance use", "doc_type":"usermanual", "kw":"Downloading a File from JupyterLab to a Local Path,Using JupyterLab to Develop Models,User Guide", @@ -1811,16 +2683,18 @@ }, { "uri":"devtool-modelarts_0211.html", - "node_id":"devtool-modelarts_0211.xml", - "product_code":"", - "code":"92", + "node_id":"en-us_topic_0000001799497164.xml", + "product_code":"modelarts", + "code":"141", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", - "doc_type":"", + "doc_type":"usermanual", "kw":"JupyterLab Plug-ins", "search_title":"", "metedata":[ { - + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" } ], "title":"JupyterLab Plug-ins", @@ -1828,16 +2702,18 @@ }, { "uri":"devtool-modelarts_0212.html", - "node_id":"devtool-modelarts_0212.xml", - "product_code":"", - "code":"93", + "node_id":"en-us_topic_0000001846056313.xml", + "product_code":"modelarts", + "code":"142", "des":"The code parametrization plug-in simplifies notebook cases. You can quickly adjust parameters and train models based on notebook cases without complex code. This plug-in ", - "doc_type":"", + "doc_type":"usermanual", "kw":"Code Parametrization Plug-in,JupyterLab Plug-ins,User Guide", "search_title":"", "metedata":[ { - + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" } ], "title":"Code Parametrization Plug-in", @@ -1845,9 +2721,9 @@ }, { "uri":"modelarts_30_0030.html", - "node_id":"modelarts_30_0030.xml", + "node_id":"en-us_topic_0000001846135705.xml", "product_code":"modelarts", - "code":"94", + "code":"143", "des":"Notebook instances allow you to use ModelArts SDK to manage OBS, training jobs, models, and real-time services.Your notebook instances have automatically obtained your AK", "doc_type":"usermanual", "kw":"Using ModelArts SDK,Using JupyterLab to Develop Models,User Guide", @@ -1864,16 +2740,18 @@ }, { "uri":"modelarts_30_0038.html", - "node_id":"modelarts_30_0038.xml", - "product_code":"", - "code":"95", + "node_id":"en-us_topic_0000001799496572.xml", + "product_code":"modelarts", + "code":"144", "des":"This section describes how to use PuTTY to remotely log in to a notebook instance on the cloud in the Windows environment.You have created a notebook instance with remote", - "doc_type":"", + "doc_type":"usermanual", "kw":"Configuring a Local IDE Accessed Using SSH,DevEnviron (New),User Guide", "search_title":"", "metedata":[ { - + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual" } ], "title":"Configuring a Local IDE Accessed Using SSH", @@ -1881,9 +2759,9 @@ }, { "uri":"modelarts_23_0032.html", - "node_id":"modelarts_23_0032.xml", + "node_id":"en-us_topic_0000001946441157.xml", "product_code":"modelarts", - "code":"96", + "code":"145", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"DevEnviron (Old)", @@ -1891,10 +2769,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"DevEnviron (Old)", @@ -1902,9 +2778,9 @@ }, { "uri":"modelarts_23_0033.html", - "node_id":"modelarts_23_0033.xml", + "node_id":"en-us_topic_0000001914882092.xml", "product_code":"modelarts", - "code":"97", + "code":"146", "des":"ModelArts integrates the open-source Jupyter Notebook and JupyterLab to provide you with online interactive development and debugging environments. You can use the Notebo", "doc_type":"usermanual", "kw":"Introduction to Notebook,DevEnviron (Old),User Guide", @@ -1912,10 +2788,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Introduction to Notebook", @@ -1923,9 +2797,9 @@ }, { "uri":"modelarts_23_0111.html", - "node_id":"modelarts_23_0111.xml", + "node_id":"en-us_topic_0000001915042024.xml", "product_code":"modelarts", - "code":"98", + "code":"147", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Managing Notebook Instances", @@ -1933,10 +2807,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Managing Notebook Instances", @@ -1944,9 +2816,9 @@ }, { "uri":"modelarts_23_0034.html", - "node_id":"modelarts_23_0034.xml", + "node_id":"en-us_topic_0000001946441161.xml", "product_code":"modelarts", - "code":"99", + "code":"148", "des":"Before developing a model, create a notebook instance, open it, and perform encoding.Only notebook instances in the Running state can be started.A maximum of 10 notebook ", "doc_type":"usermanual", "kw":"Creating a Notebook Instance,Managing Notebook Instances,User Guide", @@ -1954,10 +2826,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Creating a Notebook Instance", @@ -1965,9 +2835,9 @@ }, { "uri":"modelarts_23_0325.html", - "node_id":"modelarts_23_0325.xml", + "node_id":"en-us_topic_0000001914882096.xml", "product_code":"modelarts", - "code":"100", + "code":"149", "des":"You can open a created notebook instance (that is, an instance in the Running state) and start coding in the development environment.Go to the Jupyter Notebook page.In th", "doc_type":"usermanual", "kw":"Opening a Notebook Instance,Managing Notebook Instances,User Guide", @@ -1975,10 +2845,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Opening a Notebook Instance", @@ -1986,9 +2854,9 @@ }, { "uri":"modelarts_23_0041.html", - "node_id":"modelarts_23_0041.xml", + "node_id":"en-us_topic_0000001915042028.xml", "product_code":"modelarts", - "code":"101", + "code":"150", "des":"You can stop unwanted notebook instances to prevent unnecessary fees. You can also start a notebook instance that is in the Stopped state to use it again.Log in to the Mo", "doc_type":"usermanual", "kw":"Starting or Stopping a Notebook Instance,Managing Notebook Instances,User Guide", @@ -1996,10 +2864,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Starting or Stopping a Notebook Instance", @@ -2007,9 +2873,9 @@ }, { "uri":"modelarts_23_0042.html", - "node_id":"modelarts_23_0042.xml", + "node_id":"en-us_topic_0000001946441165.xml", "product_code":"modelarts", - "code":"102", + "code":"151", "des":"You can delete notebook instances that are no longer used to release resources.Log in to the ModelArts management console. In the left navigation pane, choose DevEnviron ", "doc_type":"usermanual", "kw":"Deleting a Notebook Instance,Managing Notebook Instances,User Guide", @@ -2017,10 +2883,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Deleting a Notebook Instance", @@ -2028,9 +2892,9 @@ }, { "uri":"modelarts_23_0035.html", - "node_id":"modelarts_23_0035.xml", + "node_id":"en-us_topic_0000001914882100.xml", "product_code":"modelarts", - "code":"103", + "code":"152", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Using Jupyter Notebook", @@ -2038,10 +2902,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Using Jupyter Notebook", @@ -2049,9 +2911,9 @@ }, { "uri":"modelarts_23_0326.html", - "node_id":"modelarts_23_0326.xml", + "node_id":"en-us_topic_0000001915042036.xml", "product_code":"modelarts", - "code":"104", + "code":"153", "des":"Jupyter Notebook is a web-based application for interactive computing. It can be applied to full-process computing: development, documentation, running code, and presenti", "doc_type":"usermanual", "kw":"Introduction to Jupyter Notebook,Using Jupyter Notebook,User Guide", @@ -2059,10 +2921,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Introduction to Jupyter Notebook", @@ -2070,9 +2930,9 @@ }, { "uri":"modelarts_23_0120.html", - "node_id":"modelarts_23_0120.xml", + "node_id":"en-us_topic_0000001946441169.xml", "product_code":"modelarts", - "code":"105", + "code":"154", "des":"This section describes common operations on Jupyter Notebook.In the notebook instance list, locate the row where the target notebook instance resides and click Open in th", "doc_type":"usermanual", "kw":"Common Operations on Jupyter Notebook,Using Jupyter Notebook,User Guide", @@ -2080,10 +2940,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Common Operations on Jupyter Notebook", @@ -2091,9 +2949,9 @@ }, { "uri":"modelarts_23_0327.html", - "node_id":"modelarts_23_0327.xml", + "node_id":"en-us_topic_0000001914882104.xml", "product_code":"modelarts", - "code":"106", + "code":"155", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Configuring the Jupyter Notebook Environment", @@ -2101,10 +2959,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Configuring the Jupyter Notebook Environment", @@ -2112,9 +2968,9 @@ }, { "uri":"modelarts_23_0117.html", - "node_id":"modelarts_23_0117.xml", + "node_id":"en-us_topic_0000001915042040.xml", "product_code":"modelarts", - "code":"107", + "code":"156", "des":"For developers who are used to coding, the terminal function is very convenient and practical. This section describes how to enable the terminal function in a notebook in", "doc_type":"usermanual", "kw":"Using the Notebook Terminal Function,Configuring the Jupyter Notebook Environment,User Guide", @@ -2122,10 +2978,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Using the Notebook Terminal Function", @@ -2133,9 +2987,9 @@ }, { "uri":"modelarts_23_0280.html", - "node_id":"modelarts_23_0280.xml", + "node_id":"en-us_topic_0000001946441173.xml", "product_code":"modelarts", - "code":"108", + "code":"157", "des":"For a GPU-based notebook instance, you can switch different versions of CUDA on the Terminal page of Jupyter.CPU-based notebook instances do not use CUDA. Therefore, the ", "doc_type":"usermanual", "kw":"Switching the CUDA Version on the Terminal Page of a GPU-based Notebook Instance,Configuring the Jup", @@ -2143,10 +2997,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Switching the CUDA Version on the Terminal Page of a GPU-based Notebook Instance", @@ -2154,9 +3006,9 @@ }, { "uri":"modelarts_23_0040.html", - "node_id":"modelarts_23_0040.xml", + "node_id":"en-us_topic_0000001914882108.xml", "product_code":"modelarts", - "code":"109", + "code":"158", "des":"Multiple environments have been installed in ModelArts notebook instances, including TensorFlow. You can use pip install to install external libraries from a Jupyter note", "doc_type":"usermanual", "kw":"Installing External Libraries and Kernels in Notebook Instances,Configuring the Jupyter Notebook Env", @@ -2164,10 +3016,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Installing External Libraries and Kernels in Notebook Instances", @@ -2175,9 +3025,9 @@ }, { "uri":"modelarts_23_0039.html", - "node_id":"modelarts_23_0039.xml", + "node_id":"en-us_topic_0000001915042044.xml", "product_code":"modelarts", - "code":"110", + "code":"159", "des":"In notebook instances, you can use ModelArts SDKs to manage OBS, training jobs, models, and real-time services.For details about how to use ModelArts SDKs, see ModelArts ", "doc_type":"usermanual", "kw":"Using ModelArts SDKs,Using Jupyter Notebook,User Guide", @@ -2185,10 +3035,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Using ModelArts SDKs", @@ -2196,9 +3044,9 @@ }, { "uri":"modelarts_23_0038.html", - "node_id":"modelarts_23_0038.xml", + "node_id":"en-us_topic_0000001946441177.xml", "product_code":"modelarts", - "code":"111", + "code":"160", "des":"If you specify Storage Path during notebook instance creation, your compiled code will be automatically stored in your specified OBS bucket. If code invocation among diff", "doc_type":"usermanual", "kw":"Synchronizing Files with OBS,Using Jupyter Notebook,User Guide", @@ -2206,10 +3054,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Synchronizing Files with OBS", @@ -2217,9 +3063,9 @@ }, { "uri":"modelarts_23_0037.html", - "node_id":"modelarts_23_0037.xml", + "node_id":"en-us_topic_0000001914882112.xml", "product_code":"modelarts", - "code":"112", + "code":"161", "des":"After code compiling is finished, you can save the entered code as a .py file which can be used for starting training jobs.Create and open a notebook instance or open an ", "doc_type":"usermanual", "kw":"Using the Convert to Python File Function,Using Jupyter Notebook,User Guide", @@ -2227,10 +3073,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Using the Convert to Python File Function", @@ -2238,9 +3082,9 @@ }, { "uri":"modelarts_23_0330.html", - "node_id":"modelarts_23_0330.xml", + "node_id":"en-us_topic_0000001915042048.xml", "product_code":"modelarts", - "code":"113", + "code":"162", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Using JupyterLab", @@ -2248,10 +3092,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Using JupyterLab", @@ -2259,9 +3101,9 @@ }, { "uri":"modelarts_23_0209.html", - "node_id":"modelarts_23_0209.xml", + "node_id":"en-us_topic_0000001946441181.xml", "product_code":"modelarts", - "code":"114", + "code":"163", "des":"JupyterLab is an interactive development environment. It is a next-generation product of Jupyter Notebook. JupyterLab enables you to compile notebooks, operate terminals,", "doc_type":"usermanual", "kw":"Introduction to JupyterLab and Common Operations,Using JupyterLab,User Guide", @@ -2269,10 +3111,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Introduction to JupyterLab and Common Operations", @@ -2280,9 +3120,9 @@ }, { "uri":"modelarts_23_0331.html", - "node_id":"modelarts_23_0331.xml", + "node_id":"en-us_topic_0000001914882116.xml", "product_code":"modelarts", - "code":"115", + "code":"164", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Uploading and Downloading Data", @@ -2290,10 +3130,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Uploading and Downloading Data", @@ -2301,9 +3139,9 @@ }, { "uri":"modelarts_23_0332.html", - "node_id":"modelarts_23_0332.xml", + "node_id":"en-us_topic_0000001915042052.xml", "product_code":"modelarts", - "code":"116", + "code":"165", "des":"On the JupyterLab page, click Upload Files to upload a file. For details, see Uploading a File in Introduction to JupyterLab and Common Operations. If a message is displa", "doc_type":"usermanual", "kw":"Uploading Data to JupyterLab,Uploading and Downloading Data,User Guide", @@ -2311,10 +3149,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Uploading Data to JupyterLab", @@ -2322,9 +3158,9 @@ }, { "uri":"modelarts_23_0333.html", - "node_id":"modelarts_23_0333.xml", + "node_id":"en-us_topic_0000001946441185.xml", "product_code":"modelarts", - "code":"117", + "code":"166", "des":"Only files within 100 MB in JupyterLab can be downloaded to a local PC. You can perform operations in different scenarios based on the storage location selected when crea", "doc_type":"usermanual", "kw":"Downloading a File from JupyterLab,Uploading and Downloading Data,User Guide", @@ -2332,10 +3168,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Downloading a File from JupyterLab", @@ -2343,9 +3177,9 @@ }, { "uri":"modelarts_23_0335.html", - "node_id":"modelarts_23_0335.xml", + "node_id":"en-us_topic_0000001914882124.xml", "product_code":"modelarts", - "code":"118", + "code":"167", "des":"In notebook instances, you can use ModelArts SDKs to manage OBS, training jobs, models, and real-time services.For details about how to use ModelArts SDKs, see ModelArts ", "doc_type":"usermanual", "kw":"Using ModelArts SDKs,Using JupyterLab,User Guide", @@ -2353,10 +3187,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Using ModelArts SDKs", @@ -2364,9 +3196,9 @@ }, { "uri":"modelarts_23_0336.html", - "node_id":"modelarts_23_0336.xml", + "node_id":"en-us_topic_0000001915042056.xml", "product_code":"modelarts", - "code":"119", + "code":"168", "des":"If you specify Storage Path during notebook instance creation, your compiled code will be automatically stored in your specified OBS bucket. If code invocation among diff", "doc_type":"usermanual", "kw":"Synchronizing Files with OBS,Using JupyterLab,User Guide", @@ -2374,199 +3206,195 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Synchronizing Files with OBS", "githuburl":"" }, { - "uri":"modelarts_23_0284.html", - "node_id":"modelarts_23_0284.xml", + "uri":"modelarts_77_0148.html", + "node_id":"en-us_topic_0000001909850640.xml", "product_code":"modelarts", - "code":"120", + "code":"169", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", - "kw":"Training Management (New Version)", + "kw":"Training Management", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], - "title":"Training Management (New Version)", + "title":"Training Management", "githuburl":"" }, { - "uri":"modelarts_23_0285.html", - "node_id":"modelarts_23_0285.xml", + "uri":"develop-modelarts-0001.html", + "node_id":"en-us_topic_0000001910056182.xml", "product_code":"modelarts", - "code":"121", - "des":"ModelArts provides model training of both the new and old versions. The new version features enhanced functions, optimized scheduling, and improved APIs. You are advised ", + "code":"170", + "des":"AI modeling involves two stages:Development: To train using deep learning, you must set up and configure the environment and debug the code. For code debugging, it is rec", "doc_type":"usermanual", - "kw":"Introduction to Model Training,Training Management (New Version),User Guide", + "kw":"Introduction to Model Development,Training Management,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Introduction to Model Training", + "title":"Introduction to Model Development", "githuburl":"" }, { - "uri":"modelarts_23_0351.html", - "node_id":"modelarts_23_0351.xml", + "uri":"develop-modelarts-0002.html", + "node_id":"en-us_topic_0000001910056162.xml", "product_code":"modelarts", - "code":"122", + "code":"171", "des":"ModelArts uses OBS to store data, and backs up and takes snapshots for models, achieving secure, reliable storage at low costs.OBSObtaining Training DataOBS provides stab", "doc_type":"usermanual", - "kw":"Preparing Data,Training Management (New Version),User Guide", + "kw":"Preparing Data,Training Management,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Preparing Data", "githuburl":"" }, { - "uri":"modelarts_23_0230.html", - "node_id":"modelarts_23_0230.xml", + "uri":"develop-modelarts-0003.html", + "node_id":"en-us_topic_0000001910056298.xml", "product_code":"modelarts", - "code":"123", + "code":"172", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", - "kw":"Selecting an Algorithm", + "kw":"Preparing Algorithms", "search_title":"", "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Selecting an Algorithm", + "title":"Preparing Algorithms", "githuburl":"" }, { - "uri":"modelarts_23_0234.html", - "node_id":"modelarts_23_0234.xml", + "uri":"develop-modelarts-0004.html", + "node_id":"en-us_topic_0000001910016226.xml", "product_code":"modelarts", - "code":"124", + "code":"173", "des":"Machine learning explores general rules from limited volume of data and uses these rules to predict unknown data. To obtain more accurate prediction results, select a pro", "doc_type":"usermanual", - "kw":"Introduction to Algorithm Selection,Selecting an Algorithm,User Guide", + "kw":"Introduction to Algorithm Preparation,Preparing Algorithms,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Introduction to Algorithm Selection", + "title":"Introduction to Algorithm Preparation", "githuburl":"" }, { - "uri":"modelarts_23_0231.html", - "node_id":"modelarts_23_0231.xml", + "uri":"develop-modelarts-0006.html", + "node_id":"en-us_topic_0000001910056310.xml", "product_code":"modelarts", - "code":"125", + "code":"174", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", - "kw":"Using a Custom Script", + "kw":"Using a Preset Image (Custom Script)", "search_title":"", "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Using a Custom Script", + "title":"Using a Preset Image (Custom Script)", "githuburl":"" }, { - "uri":"modelarts_23_0283.html", - "node_id":"modelarts_23_0283.xml", + "uri":"develop-modelarts-0007.html", + "node_id":"en-us_topic_0000001943975353.xml", "product_code":"modelarts", - "code":"126", - "des":"If the subscribed algorithms cannot meet your requirements or you want to migrate local algorithms to ModelArts for training, use the ModelArts built-in training engines ", + "code":"175", + "des":"If the subscribed algorithms cannot meet your requirements or you want to migrate local algorithms to ModelArts for training, use the ModelArts preset images to create al", "doc_type":"usermanual", - "kw":"Introduction to Custom Script,Using a Custom Script,User Guide", + "kw":"Overview,Using a Preset Image (Custom Script),User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Introduction to Custom Script", + "title":"Overview", "githuburl":"" }, { - "uri":"modelarts_23_0240_0.html", - "node_id":"modelarts_23_0240_0.xml", + "uri":"develop-modelarts-0008.html", + "node_id":"en-us_topic_0000001943975385.xml", "product_code":"modelarts", - "code":"127", - "des":"Before you use a custom script to create an algorithm, develop the algorithm code. This section describes how to modify local code for model training on ModelArts.When cr", + "code":"176", + "des":"Before you use a preset image to create an algorithm, develop the algorithm code. This section describes how to modify local code for model training on ModelArts.When cre", "doc_type":"usermanual", - "kw":"Developing a Custom Script,Using a Custom Script,User Guide", + "kw":"Developing a Custom Script,Using a Preset Image (Custom Script),User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Developing a Custom Script", "githuburl":"" }, { - "uri":"modelarts_23_0233.html", - "node_id":"modelarts_23_0233.xml", + "uri":"develop-modelarts-0009.html", + "node_id":"en-us_topic_0000001910016246.xml", "product_code":"modelarts", - "code":"128", + "code":"177", "des":"Your locally developed algorithms or algorithms developed using other tools can be uploaded to ModelArts for unified management. Note the following when creating a custom", "doc_type":"usermanual", - "kw":"Creating an Algorithm,Using a Custom Script,User Guide", + "kw":"Creating an Algorithm,Using a Preset Image (Custom Script),User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Creating an Algorithm", @@ -2574,30 +3402,30 @@ }, { "uri":"develop-modelarts-0077.html", - "node_id":"develop-modelarts-0077.xml", + "node_id":"en-us_topic_0000001943975497.xml", "product_code":"modelarts", - "code":"129", - "des":"The preset images can be used in most training scenarios. In certain scenarios, ModelArts allows you to create custom images to train models. Custom images can be used to", + "code":"178", + "des":"The subscribed algorithms and preset images can be used in most training scenarios. In certain scenarios, ModelArts allows you to create custom images to train models.Cus", "doc_type":"usermanual", - "kw":"Using Custom Images,Selecting an Algorithm,User Guide", + "kw":"Using a Custom Image,Preparing Algorithms,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Using Custom Images", + "title":"Using a Custom Image", "githuburl":"" }, { - "uri":"modelarts_23_0352.html", - "node_id":"modelarts_23_0352.xml", + "uri":"develop-modelarts-0010.html", + "node_id":"en-us_topic_0000001910016162.xml", "product_code":"modelarts", - "code":"130", + "code":"179", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Performing a Training", @@ -2605,20 +3433,20 @@ "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Performing a Training", "githuburl":"" }, { - "uri":"modelarts_23_0286.html", - "node_id":"modelarts_23_0286.xml", + "uri":"develop-modelarts-0011.html", + "node_id":"en-us_topic_0000001943975349.xml", "product_code":"modelarts", - "code":"131", + "code":"180", "des":"ModelArts training management enables you to create training jobs, view training statuses, and manage job versions. Model training is an iterative optimization process. T", "doc_type":"usermanual", "kw":"Creating a Training Job,Performing a Training,User Guide", @@ -2626,146 +3454,167 @@ "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Creating a Training Job", "githuburl":"" }, { - "uri":"modelarts_23_0288.html", - "node_id":"modelarts_23_0288.xml", + "uri":"develop-modelarts-0013.html", + "node_id":"en-us_topic_0000001910056186.xml", "product_code":"modelarts", - "code":"132", - "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "code":"181", + "des":"Log in to the ModelArts management console.In the navigation pane on the left, choose Training Management > Training Jobs.In the training job list, click a job name to sw", "doc_type":"usermanual", - "kw":"Viewing Job Details", + "kw":"Viewing Training Job Details,Performing a Training,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Viewing Job Details", + "title":"Viewing Training Job Details", "githuburl":"" }, { - "uri":"modelarts_23_0400.html", - "node_id":"modelarts_23_0400.xml", + "uri":"develop-modelarts-0097.html", + "node_id":"en-us_topic_0000001943975513.xml", "product_code":"modelarts", - "code":"133", - "des":"Log in to the ModelArts management console. In the left navigation pane, choose Training Management > Training Jobs (New). The training job list is displayed by default.C", + "code":"182", + "des":"On the training job details page, you can preview logs, download logs, search for logs by keyword, and filter system logs in the log pane.Previewing logsYou can preview l", "doc_type":"usermanual", - "kw":"Training Job Details,Viewing Job Details,User Guide", + "kw":"Viewing Training Job Logs,Performing a Training,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Training Job Details", + "title":"Viewing Training Job Logs", "githuburl":"" }, { - "uri":"develop-modelarts-0081.html", - "node_id":"develop-modelarts-0081.xml", + "uri":"develop-modelarts-0092.html", + "node_id":"en-us_topic_0000001910056278.xml", "product_code":"modelarts", - "code":"134", + "code":"183", "des":"Any key event of a training job will be recorded at the backend after the training job is displayed for you. You can check events on the training job details page.This he", "doc_type":"usermanual", - "kw":"Training Job Event,Viewing Job Details,User Guide", + "kw":"Viewing Training Job Events,Performing a Training,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Training Job Event", + "title":"Viewing Training Job Events", "githuburl":"" }, { - "uri":"modelarts_23_0401.html", - "node_id":"modelarts_23_0401.xml", + "uri":"develop-modelarts-0015.html", + "node_id":"en-us_topic_0000001910056334.xml", "product_code":"modelarts", - "code":"135", - "des":"On the training job details page, you can preview logs, download logs, search for logs by keyword, and identify training faults in the log pane.Preview logs.You can previ", + "code":"184", + "des":"You can view the resource usage of a compute node in the Resource Usages window. The data of at most the last three days can be displayed. When the resource usage window ", "doc_type":"usermanual", - "kw":"Training Log Details,Viewing Job Details,User Guide", + "kw":"Viewing the Resource Usage of a Training Job,Performing a Training,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Training Log Details", + "title":"Viewing the Resource Usage of a Training Job", "githuburl":"" }, { - "uri":"modelarts_23_0402.html", - "node_id":"modelarts_23_0402.xml", + "uri":"develop-modelarts-0104.html", + "node_id":"en-us_topic_0000001943975357.xml", "product_code":"modelarts", - "code":"136", - "des":"In the Resource Usages pane, view resource usage of compute nodes.Operation 1: If a training job uses multiple compute nodes, choose a node from the drop-down list box to", + "code":"185", + "des":"This section describes environment variables preset in a training container. The environment variables include:Path environment variablesEnvironment variables of a distri", "doc_type":"usermanual", - "kw":"Resource Usage,Viewing Job Details,User Guide", + "kw":"Viewing Environment Variables of a Training Container,Performing a Training,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Resource Usage", + "title":"Viewing Environment Variables of a Training Container", "githuburl":"" }, { - "uri":"modelarts_23_0287.html", - "node_id":"modelarts_23_0287.xml", + "uri":"develop-modelarts-0017.html", + "node_id":"en-us_topic_0000001910056190.xml", "product_code":"modelarts", - "code":"137", - "des":"In the training job list, click Stop in the Operation column of a training job that is in creating, pending, or running state to stop the job.A training job in completed,", + "code":"186", + "des":"To modify the algorithm of a training job, click Save As Algorithm in the upper right corner of the training job details page.On the Algorithms page, the algorithm parame", "doc_type":"usermanual", "kw":"Stopping, Rebuilding, or Searching for a Training Job,Performing a Training,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Stopping, Rebuilding, or Searching for a Training Job", "githuburl":"" }, { - "uri":"modelarts_23_0353.html", - "node_id":"modelarts_23_0353.xml", + "uri":"develop-modelarts-0106.html", + "node_id":"en-us_topic_0000001910016166.xml", "product_code":"modelarts", - "code":"138", + "code":"187", + "des":"You can use Cloud Shell provided by the ModelArts console to log in to a running training container.You can use Cloud Shell to log in to a running training container usin", + "doc_type":"usermanual", + "kw":"Logging In to a Training Container Using Cloud Shell,Performing a Training,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Logging In to a Training Container Using Cloud Shell", + "githuburl":"" + }, + { + "uri":"develop-modelarts-0018.html", + "node_id":"en-us_topic_0000001943975345.xml", + "product_code":"modelarts", + "code":"188", "des":"Release resources of a training job when not in use.On the Training Jobs page, click Delete in the Operation column of the target training job.Go to OBS and delete the OB", "doc_type":"usermanual", "kw":"Releasing Training Job Resources,Performing a Training,User Guide", @@ -2773,20 +3622,125 @@ "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Releasing Training Job Resources", "githuburl":"" }, { - "uri":"modelarts_23_0289.html", - "node_id":"modelarts_23_0289.xml", + "uri":"develop-modelarts-0021.html", + "node_id":"en-us_topic_0000001910016134.xml", "product_code":"modelarts", - "code":"139", + "code":"189", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Advanced Training Operations", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Advanced Training Operations", + "githuburl":"" + }, + { + "uri":"modelarts_trouble_0003.html", + "node_id":"en-us_topic_0000001910016146.xml", + "product_code":"modelarts", + "code":"190", + "des":"During model training, a training failure may occur due to a hardware fault. For hardware faults, ModelArts provides fault tolerance check to isolate faulty nodes to impr", + "doc_type":"usermanual", + "kw":"Training Fault Tolerance Check,Advanced Training Operations,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Training Fault Tolerance Check", + "githuburl":"" + }, + { + "uri":"develop-modelarts-0023.html", + "node_id":"en-us_topic_0000001910016318.xml", + "product_code":"modelarts", + "code":"191", + "des":"Resumable training indicates that an interrupted training job can be automatically resumed from the checkpoint where the previous training was interrupted. This method is", + "doc_type":"usermanual", + "kw":"Resumable Training and Incremental Training,Advanced Training Operations,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Resumable Training and Incremental Training", + "githuburl":"" + }, + { + "uri":"modelarts_trouble_0108.html", + "node_id":"en-us_topic_0000001910016250.xml", + "product_code":"modelarts", + "code":"192", + "des":"A training job may be suspended due to unknown reasons. If the suspension cannot be detected promptly, resources cannot be released, leading to a waste. To minimize resou", + "doc_type":"usermanual", + "kw":"Detecting Training Job Suspension,Advanced Training Operations,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Detecting Training Job Suspension", + "githuburl":"" + }, + { + "uri":"develop-modelarts-0082.html", + "node_id":"en-us_topic_0000001910016242.xml", + "product_code":"modelarts", + "code":"193", + "des":"You can configure the priority when you create a training job using a new-version dedicated resource pool. You can change the priority of a pending job. The value ranges ", + "doc_type":"usermanual", + "kw":"Permission to Set the Highest Job Priority,Advanced Training Operations,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", + "opensource":"true", + "documenttype":"usermanual" + } + ], + "title":"Permission to Set the Highest Job Priority", + "githuburl":"" + }, + { + "uri":"modelarts_23_0289.html", + "node_id":"en-us_topic_0000001916662102.xml", + "product_code":"modelarts", + "code":"194", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Training Hyperparameter Search", @@ -2794,10 +3748,10 @@ "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Training Hyperparameter Search", @@ -2805,9 +3759,9 @@ }, { "uri":"modelarts_23_0290.html", - "node_id":"modelarts_23_0290.xml", + "node_id":"en-us_topic_0000001947261237.xml", "product_code":"modelarts", - "code":"140", + "code":"195", "des":"The new version of ModelArts training jobs supports hyperparameter search, which can automatically search for optimal hyperparameters for your models.During model trainin", "doc_type":"usermanual", "kw":"Introduction to Hyperparameter Search,Training Hyperparameter Search,User Guide", @@ -2815,10 +3769,10 @@ "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Introduction to Hyperparameter Search", @@ -2826,9 +3780,9 @@ }, { "uri":"modelarts_23_0296.html", - "node_id":"modelarts_23_0296.xml", + "node_id":"en-us_topic_0000001916502162.xml", "product_code":"modelarts", - "code":"141", + "code":"196", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Search Algorithm", @@ -2836,10 +3790,10 @@ "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Search Algorithm", @@ -2847,9 +3801,9 @@ }, { "uri":"modelarts_23_0297.html", - "node_id":"modelarts_23_0297.xml", + "node_id":"en-us_topic_0000001916662106.xml", "product_code":"modelarts", - "code":"142", + "code":"197", "des":"In Bayesian optimization, it is assumed that there exists a functional relationship between hyperparameters and the objective function. Based on the evaluation values of ", "doc_type":"usermanual", "kw":"Bayesian Optimization (SMAC),Search Algorithm,User Guide", @@ -2857,10 +3811,10 @@ "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Bayesian Optimization (SMAC)", @@ -2868,9 +3822,9 @@ }, { "uri":"modelarts_23_0303_0.html", - "node_id":"modelarts_23_0303_0.xml", + "node_id":"en-us_topic_0000001947261241.xml", "product_code":"modelarts", - "code":"143", + "code":"198", "des":"The tree-structured parzen estimator (TPE) algorithm uses the Gaussian mixture model to learn the model hyperparameters. On each trial, for each parameter, TPE fits one G", "doc_type":"usermanual", "kw":"TPE Algorithm,Search Algorithm,User Guide", @@ -2878,10 +3832,10 @@ "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"TPE Algorithm", @@ -2889,9 +3843,9 @@ }, { "uri":"modelarts_23_0304_0.html", - "node_id":"modelarts_23_0304_0.xml", + "node_id":"en-us_topic_0000001916502166.xml", "product_code":"modelarts", - "code":"144", + "code":"199", "des":"The simulated annealing algorithm is a simple but effective variant on random search that leverages smoothness in the response surface. The annealing rate is not adaptive", "doc_type":"usermanual", "kw":"Simulated Annealing Algorithm,Search Algorithm,User Guide", @@ -2899,10 +3853,10 @@ "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Simulated Annealing Algorithm", @@ -2910,9 +3864,9 @@ }, { "uri":"modelarts_23_0302_0.html", - "node_id":"modelarts_23_0302_0.xml", + "node_id":"en-us_topic_0000001916662110.xml", "product_code":"modelarts", - "code":"145", + "code":"200", "des":"Hyperparameters that you want to optimize need to be defined when you configure Hyperparameters. You can specify the name, type, default value, and constraints. For detai", "doc_type":"usermanual", "kw":"Creating a Hyperparameter Search Job,Training Hyperparameter Search,User Guide", @@ -2920,44 +3874,42 @@ "metedata":[ { "prodname":"modelarts", + "IsMulti":"No", + "IsBot":"Yes", "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Creating a Hyperparameter Search Job", "githuburl":"" }, { - "uri":"modelarts_23_0051.html", - "node_id":"modelarts_23_0051.xml", + "uri":"modelarts_77_0149.html", + "node_id":"en-us_topic_0000001943969849.xml", "product_code":"modelarts", - "code":"146", + "code":"201", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", - "kw":"AI Application Management", + "kw":"Inference Deployment", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], - "title":"AI Application Management", + "title":"Inference Deployment", "githuburl":"" }, { - "uri":"modelarts_23_0052.html", - "node_id":"modelarts_23_0052.xml", + "uri":"inference-modelarts-0001.html", + "node_id":"en-us_topic_0000001910014914.xml", "product_code":"modelarts", - "code":"147", - "des":"AI development and optimization require frequent iterations and debugging. Changes in datasets, training code, or parameters affect the quality of models. If the metadata", + "code":"202", + "des":"After an AI model is developed, you can use it to create an AI application and quickly deploy the application as an inference service. The AI inference capabilities can b", "doc_type":"usermanual", - "kw":"Introduction to AI Application Management,AI Application Management,User Guide", + "kw":"Introduction to Inference,Inference Deployment,User Guide", "search_title":"", "metedata":[ { @@ -2965,17 +3917,59 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" + } + ], + "title":"Introduction to Inference", + "githuburl":"" + }, + { + "uri":"inference-modelarts-0002.html", + "node_id":"en-us_topic_0000001910054910.xml", + "product_code":"modelarts", + "code":"203", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Managing AI Applications", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"No", + "IsMulti":"Yes" + } + ], + "title":"Managing AI Applications", + "githuburl":"" + }, + { + "uri":"inference-modelarts-0003.html", + "node_id":"en-us_topic_0000001943974209.xml", + "product_code":"modelarts", + "code":"204", + "des":"AI development and optimization require frequent iterations and debugging. Modifications in datasets, training code, or parameters affect the quality of models. If the me", + "doc_type":"usermanual", + "kw":"Introduction to AI Application Management,Managing AI Applications,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"No", + "IsMulti":"Yes" } ], "title":"Introduction to AI Application Management", "githuburl":"" }, { - "uri":"modelarts_23_0204.html", - "node_id":"modelarts_23_0204.xml", + "uri":"inference-modelarts-0004.html", + "node_id":"en-us_topic_0000001910054982.xml", "product_code":"modelarts", - "code":"148", + "code":"205", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Creating an AI Application", @@ -2986,18 +3980,18 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], "title":"Creating an AI Application", "githuburl":"" }, { - "uri":"modelarts_23_0054.html", - "node_id":"modelarts_23_0054.xml", + "uri":"inference-modelarts-0006.html", + "node_id":"en-us_topic_0000001943974093.xml", "product_code":"modelarts", - "code":"149", - "des":"You can create a training job on ModelArts and perform training to obtain a satisfactory model. Then import the model to Model Management for centralized management. In a", + "code":"206", + "des":"You can create a training job in ModelArts to obtain a satisfactory model. Then, you can import the model to AI Application Management for centralized management. In addi", "doc_type":"usermanual", "kw":"Importing a Meta Model from a Training Job,Creating an AI Application,User Guide", "search_title":"", @@ -3007,60 +4001,18 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], "title":"Importing a Meta Model from a Training Job", "githuburl":"" }, { - "uri":"modelarts_23_0205.html", - "node_id":"modelarts_23_0205.xml", + "uri":"inference-modelarts-0008.html", + "node_id":"en-us_topic_0000001943974089.xml", "product_code":"modelarts", - "code":"150", - "des":"Because the configurations of models with the same functions are similar, ModelArts integrates the configurations of such models into a common template. By using this tem", - "doc_type":"usermanual", - "kw":"Importing a Meta Model from a Template,Creating an AI Application,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Importing a Meta Model from a Template", - "githuburl":"" - }, - { - "uri":"modelarts_23_0206.html", - "node_id":"modelarts_23_0206.xml", - "product_code":"modelarts", - "code":"151", - "des":"For AI engines that are not supported by ModelArts, you can import the models you compile to ModelArts from custom images.For details about the specifications and descrip", - "doc_type":"usermanual", - "kw":"Importing a Meta Model from a Container Image,Creating an AI Application,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Importing a Meta Model from a Container Image", - "githuburl":"" - }, - { - "uri":"modelarts_23_0207.html", - "node_id":"modelarts_23_0207.xml", - "product_code":"modelarts", - "code":"152", - "des":"In scenarios where frequently-used frameworks are used for model development and training, you can import the model to ModelArts and use it to create an AI application fo", + "code":"207", + "des":"If a model is developed and trained using a mainstream AI engine, import the model to ModelArts and use the model to create an AI application. In this way, the AI applica", "doc_type":"usermanual", "kw":"Importing a Meta Model from OBS,Creating an AI Application,User Guide", "search_title":"", @@ -3070,20 +4022,62 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], "title":"Importing a Meta Model from OBS", "githuburl":"" }, { - "uri":"modelarts_23_0055.html", - "node_id":"modelarts_23_0055.xml", + "uri":"inference-modelarts-0009.html", + "node_id":"en-us_topic_0000001910054906.xml", "product_code":"modelarts", - "code":"153", + "code":"208", + "des":"For AI engines that are not supported by ModelArts, you can import the models you compile to ModelArts from custom images.For details about custom image specifications, s", + "doc_type":"usermanual", + "kw":"Importing a Meta Model from a Container Image,Creating an AI Application,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"No", + "IsMulti":"Yes" + } + ], + "title":"Importing a Meta Model from a Container Image", + "githuburl":"" + }, + { + "uri":"inference-modelarts-0005.html", + "node_id":"en-us_topic_0000001943974097.xml", + "product_code":"modelarts", + "code":"209", + "des":"After an AI application is created, you can view its information on the details page.Log in to the ModelArts management console. In the navigation pane on the left, choos", + "doc_type":"usermanual", + "kw":"Viewing Details About an AI Application,Managing AI Applications,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"No", + "IsMulti":"Yes" + } + ], + "title":"Viewing Details About an AI Application", + "githuburl":"" + }, + { + "uri":"inference-modelarts-0013.html", + "node_id":"en-us_topic_0000001910054874.xml", + "product_code":"modelarts", + "code":"210", "des":"To facilitate source tracing and repeated AI application tuning, ModelArts provides the AI application version management function. You can manage models based on version", "doc_type":"usermanual", - "kw":"Managing AI Application Versions,AI Application Management,User Guide", + "kw":"Managing AI Applications,Managing AI Applications,User Guide", "search_title":"", "metedata":[ { @@ -3091,20 +4085,20 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], - "title":"Managing AI Application Versions", + "title":"Managing AI Applications", "githuburl":"" }, { - "uri":"modelarts_23_0057.html", - "node_id":"modelarts_23_0057.xml", + "uri":"inference-modelarts-0016.html", + "node_id":"en-us_topic_0000001943974193.xml", "product_code":"modelarts", - "code":"154", + "code":"211", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", - "kw":"Deploying a Service", + "kw":"Deploying AI Applications as Real-Time Services", "search_title":"", "metedata":[ { @@ -3112,62 +4106,20 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], - "title":"Deploying a Service", + "title":"Deploying AI Applications as Real-Time Services", "githuburl":"" }, { - "uri":"modelarts_23_0058.html", - "node_id":"modelarts_23_0058.xml", + "uri":"inference-modelarts-0018.html", + "node_id":"en-us_topic_0000001910014974.xml", "product_code":"modelarts", - "code":"155", - "des":"After a training job is complete and an AI application is generated, you can deploy the model on the Service Deployment page. You can also deploy the model imported from ", - "doc_type":"usermanual", - "kw":"Deploying the AI Applications as Services,Deploying a Service,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Deploying the AI Applications as Services", - "githuburl":"" - }, - { - "uri":"modelarts_23_0059.html", - "node_id":"modelarts_23_0059.xml", - "product_code":"modelarts", - "code":"156", - "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", - "doc_type":"usermanual", - "kw":"Real-Time Services", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Real-Time Services", - "githuburl":"" - }, - { - "uri":"modelarts_23_0060.html", - "node_id":"modelarts_23_0060.xml", - "product_code":"modelarts", - "code":"157", + "code":"212", "des":"After an AI application is prepared, you can deploy the AI application as a real-time service and predict and call the service.A maximum of 20 real-time services can be d", "doc_type":"usermanual", - "kw":"Deploying a Model as a Real-Time Service,Real-Time Services,User Guide", + "kw":"Deploying as a Real-Time Service,Deploying AI Applications as Real-Time Services,User Guide", "search_title":"", "metedata":[ { @@ -3175,20 +4127,20 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], - "title":"Deploying a Model as a Real-Time Service", + "title":"Deploying as a Real-Time Service", "githuburl":"" }, { - "uri":"modelarts_23_0061.html", - "node_id":"modelarts_23_0061.xml", + "uri":"inference-modelarts-0019.html", + "node_id":"en-us_topic_0000001910014870.xml", "product_code":"modelarts", - "code":"158", + "code":"213", "des":"After an AI application is deployed as a real-time service, you can access the service page to view its details.Log in to the ModelArts management console and choose Serv", "doc_type":"usermanual", - "kw":"Viewing Service Details,Real-Time Services,User Guide", + "kw":"Viewing Service Details,Deploying AI Applications as Real-Time Services,User Guide", "search_title":"", "metedata":[ { @@ -3196,20 +4148,20 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], "title":"Viewing Service Details", "githuburl":"" }, { - "uri":"modelarts_23_0062.html", - "node_id":"modelarts_23_0062.xml", + "uri":"inference-modelarts-0020.html", + "node_id":"en-us_topic_0000001910014986.xml", "product_code":"modelarts", - "code":"159", + "code":"214", "des":"After an AI application is deployed as a real-time service, you can debug code or add files for testing on the Prediction tab page. Based on the input request (JSON text ", "doc_type":"usermanual", - "kw":"Testing a Service,Real-Time Services,User Guide", + "kw":"Testing the Deployed Service,Deploying AI Applications as Real-Time Services,User Guide", "search_title":"", "metedata":[ { @@ -3217,20 +4169,20 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], - "title":"Testing a Service", + "title":"Testing the Deployed Service", "githuburl":"" }, { "uri":"modelarts_23_0063.html", - "node_id":"modelarts_23_0063.xml", + "node_id":"en-us_topic_0000001947339577.xml", "product_code":"modelarts", - "code":"160", + "code":"215", "des":"If a real-time service is in the Running state, the real-time service has been deployed successfully. This service provides a standard RESTful API for users to call. Befo", "doc_type":"usermanual", - "kw":"Accessing a Real-Time Service (Token-based Authentication),Real-Time Services,User Guide", + "kw":"Accessing a Real-Time Service (Token-based Authentication),Deploying AI Applications as Real-Time Se", "search_title":"", "metedata":[ { @@ -3238,20 +4190,20 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], "title":"Accessing a Real-Time Service (Token-based Authentication)", "githuburl":"" }, { - "uri":"modelarts_23_0065.html", - "node_id":"modelarts_23_0065.xml", + "uri":"inference-modelarts-0039.html", + "node_id":"en-us_topic_0000001943974185.xml", "product_code":"modelarts", - "code":"161", + "code":"216", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", - "kw":"Batch Services", + "kw":"Deploying AI Applications as Batch Services", "search_title":"", "metedata":[ { @@ -3259,20 +4211,20 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], - "title":"Batch Services", + "title":"Deploying AI Applications as Batch Services", "githuburl":"" }, { - "uri":"modelarts_23_0066.html", - "node_id":"modelarts_23_0066.xml", + "uri":"inference-modelarts-0040.html", + "node_id":"en-us_topic_0000001910054882.xml", "product_code":"modelarts", - "code":"162", + "code":"217", "des":"After an AI application is prepared, you can deploy it as a batch service. The Service Deployment > Batch Services page lists all batch services. You can enter a service ", "doc_type":"usermanual", - "kw":"Deploying a Model as a Batch Service,Batch Services,User Guide", + "kw":"Deploying as a Batch Service,Deploying AI Applications as Batch Services,User Guide", "search_title":"", "metedata":[ { @@ -3280,20 +4232,20 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], - "title":"Deploying a Model as a Batch Service", + "title":"Deploying as a Batch Service", "githuburl":"" }, { - "uri":"modelarts_23_0067.html", - "node_id":"modelarts_23_0067.xml", + "uri":"inference-modelarts-0041.html", + "node_id":"en-us_topic_0000001943974117.xml", "product_code":"modelarts", - "code":"163", - "des":"When deploying a batch service, you can select the location of the output data directory. You can view the running result of the batch service that is in the Running comp", + "code":"218", + "des":"When deploying a batch service, you can select the location of the output data directory. You can view the running result of the batch service that is in the Completed st", "doc_type":"usermanual", - "kw":"Viewing the Batch Service Prediction Result,Batch Services,User Guide", + "kw":"Viewing the Batch Service Prediction Result,Deploying AI Applications as Batch Services,User Guide", "search_title":"", "metedata":[ { @@ -3301,20 +4253,20 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], "title":"Viewing the Batch Service Prediction Result", "githuburl":"" }, { - "uri":"modelarts_23_0071.html", - "node_id":"modelarts_23_0071.xml", + "uri":"inference-modelarts-0087.html", + "node_id":"en-us_topic_0000001943974101.xml", "product_code":"modelarts", - "code":"164", - "des":"For a deployed service, you can modify its basic information to match service changes and upgrade it. You can modify the basic information about a service in either of th", + "code":"219", + "des":"For a deployed service, you can modify its basic information to match service changes and change the AI application version to upgrade it.You can modify the basic informa", "doc_type":"usermanual", - "kw":"Upgrading a Service,Deploying a Service,User Guide", + "kw":"Upgrading a Service,Inference Deployment,User Guide", "search_title":"", "metedata":[ { @@ -3322,20 +4274,20 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], "title":"Upgrading a Service", "githuburl":"" }, { - "uri":"modelarts_23_0072.html", - "node_id":"modelarts_23_0072.xml", + "uri":"inference-modelarts-0088.html", + "node_id":"en-us_topic_0000001910054926.xml", "product_code":"modelarts", - "code":"165", + "code":"220", "des":"You can start services in the Successful, Abnormal, or Stopped status. Services in the Deploying state cannot be started. You can start a service in the following ways:Lo", "doc_type":"usermanual", - "kw":"Starting or Stopping a Service,Deploying a Service,User Guide", + "kw":"Starting, Stopping, Deleting, or Restarting a Service,Inference Deployment,User Guide", "search_title":"", "metedata":[ { @@ -3343,20 +4295,20 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], - "title":"Starting or Stopping a Service", + "title":"Starting, Stopping, Deleting, or Restarting a Service", "githuburl":"" }, { - "uri":"modelarts_23_0073.html", - "node_id":"modelarts_23_0073.xml", + "uri":"inference-modelarts-0089.html", + "node_id":"en-us_topic_0000001943974081.xml", "product_code":"modelarts", - "code":"166", + "code":"221", "des":"If a service is no longer in use, you can delete it to release resources.Log in to the ModelArts management console and choose Service Deployment from the left navigation", "doc_type":"usermanual", - "kw":"Deleting a Service,Deploying a Service,User Guide", + "kw":"Deleting a Service,Inference Deployment,User Guide", "search_title":"", "metedata":[ { @@ -3364,17 +4316,38 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], "title":"Deleting a Service", "githuburl":"" }, { - "uri":"modelarts_23_0090.html", - "node_id":"modelarts_23_0090.xml", + "uri":"inference-modelarts-0053.html", + "node_id":"en-us_topic_0000001910014902.xml", "product_code":"modelarts", - "code":"167", + "code":"222", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Inference Specifications", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"No", + "IsMulti":"Yes" + } + ], + "title":"Inference Specifications", + "githuburl":"" + }, + { + "uri":"inference-modelarts-0054.html", + "node_id":"en-us_topic_0000001910014998.xml", + "product_code":"modelarts", + "code":"223", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Model Package Specifications", @@ -3385,20 +4358,20 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], "title":"Model Package Specifications", "githuburl":"" }, { - "uri":"modelarts_23_0091.html", - "node_id":"modelarts_23_0091.xml", + "uri":"inference-modelarts-0055.html", + "node_id":"en-us_topic_0000001943974161.xml", "product_code":"modelarts", - "code":"168", + "code":"224", "des":"When creating an AI application on the AI application management page, make sure that any meta model imported from OBS complies with certain specifications.The model pack", "doc_type":"usermanual", - "kw":"Model Package Specifications,Model Package Specifications,User Guide", + "kw":"Introduction,Model Package Specifications,User Guide", "search_title":"", "metedata":[ { @@ -3406,20 +4379,20 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], - "title":"Model Package Specifications", + "title":"Introduction", "githuburl":"" }, { - "uri":"modelarts_23_0092.html", - "node_id":"modelarts_23_0092.xml", + "uri":"inference-modelarts-0056.html", + "node_id":"en-us_topic_0000001943974157.xml", "product_code":"modelarts", - "code":"169", - "des":"A model developer needs to compile a configuration file when publishing a model. The model configuration file describes the model usage, computing framework, precision, i", + "code":"225", + "des":"You must edit a configuration file config.json when publishing a model. The model configuration file describes the model usage, computing framework, precision, inference ", "doc_type":"usermanual", - "kw":"Specifications for Compiling the Model Configuration File,Model Package Specifications,User Guide", + "kw":"Specifications for Editing a Model Configuration File,Model Package Specifications,User Guide", "search_title":"", "metedata":[ { @@ -3427,17 +4400,17 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], - "title":"Specifications for Compiling the Model Configuration File", + "title":"Specifications for Editing a Model Configuration File", "githuburl":"" }, { - "uri":"modelarts_23_0093.html", - "node_id":"modelarts_23_0093.xml", + "uri":"inference-modelarts-0057.html", + "node_id":"en-us_topic_0000001910014882.xml", "product_code":"modelarts", - "code":"170", + "code":"226", "des":"This section describes the general method of editing model inference code in ModelArts. This section also provides an inference code example for the TensorFlow engine and", "doc_type":"usermanual", "kw":"Specifications for Writing Model Inference Code,Model Package Specifications,User Guide", @@ -3448,395 +4421,17 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], "title":"Specifications for Writing Model Inference Code", "githuburl":"" }, { - "uri":"modelarts_23_0097.html", - "node_id":"modelarts_23_0097.xml", + "uri":"inference-modelarts-0078.html", + "node_id":"en-us_topic_0000001910054958.xml", "product_code":"modelarts", - "code":"171", - "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", - "doc_type":"usermanual", - "kw":"Model Templates", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Model Templates", - "githuburl":"" - }, - { - "uri":"modelarts_23_0098.html", - "node_id":"modelarts_23_0098.xml", - "product_code":"modelarts", - "code":"172", - "des":"Because the configurations of models with the same functions are similar, ModelArts integrates the configurations of such models into a common template. By using this tem", - "doc_type":"usermanual", - "kw":"Introduction to Model Templates,Model Templates,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Introduction to Model Templates", - "githuburl":"" - }, - { - "uri":"modelarts_23_0118.html", - "node_id":"modelarts_23_0118.xml", - "product_code":"modelarts", - "code":"173", - "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", - "doc_type":"usermanual", - "kw":"Templates", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Templates", - "githuburl":"" - }, - { - "uri":"modelarts_23_0161.html", - "node_id":"modelarts_23_0161.xml", - "product_code":"modelarts", - "code":"174", - "des":"AI engine: TensorFlow 1.8; Environment: Python 2.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or appl", - "doc_type":"usermanual", - "kw":"TensorFlow-py27 General Template,Templates,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"TensorFlow-py27 General Template", - "githuburl":"" - }, - { - "uri":"modelarts_23_0262.html", - "node_id":"modelarts_23_0262.xml", - "product_code":"modelarts", - "code":"175", - "des":"AI engine: TensorFlow 1.8; Environment: Python 3.6; Input and output mode: Undefined. Select an appropriate input and output mode based on the model function or applicati", - "doc_type":"usermanual", - "kw":"TensorFlow-py36 General Template,Templates,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"TensorFlow-py36 General Template", - "githuburl":"" - }, - { - "uri":"modelarts_23_0163.html", - "node_id":"modelarts_23_0163.xml", - "product_code":"modelarts", - "code":"176", - "des":"AI engine: MXNet 1.2.1; Environment: Python 2.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or applica", - "doc_type":"usermanual", - "kw":"MXNet-py27 General Template,Templates,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"MXNet-py27 General Template", - "githuburl":"" - }, - { - "uri":"modelarts_23_0164.html", - "node_id":"modelarts_23_0164.xml", - "product_code":"modelarts", - "code":"177", - "des":"AI engine: MXNet 1.2.1; Environment: Python 3.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or applica", - "doc_type":"usermanual", - "kw":"MXNet-py37 General Template,Templates,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"MXNet-py37 General Template", - "githuburl":"" - }, - { - "uri":"modelarts_23_0165.html", - "node_id":"modelarts_23_0165.xml", - "product_code":"modelarts", - "code":"178", - "des":"AI engine: PyTorch 1.0; Environment: Python 2.7; Input and output mode: Undefined. Select an appropriate input and output mode based on the model function or application ", - "doc_type":"usermanual", - "kw":"PyTorch-py27 General Template,Templates,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"PyTorch-py27 General Template", - "githuburl":"" - }, - { - "uri":"modelarts_23_0166.html", - "node_id":"modelarts_23_0166.xml", - "product_code":"modelarts", - "code":"179", - "des":"AI engine: PyTorch 1.0; Environment: Python 3.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or applica", - "doc_type":"usermanual", - "kw":"PyTorch-py37 General Template,Templates,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"PyTorch-py37 General Template", - "githuburl":"" - }, - { - "uri":"modelarts_23_0167.html", - "node_id":"modelarts_23_0167.xml", - "product_code":"modelarts", - "code":"180", - "des":"AI engine: CPU-based Caffe 1.0; Environment: Python 2.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or", - "doc_type":"usermanual", - "kw":"Caffe-CPU-py27 General Template,Templates,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Caffe-CPU-py27 General Template", - "githuburl":"" - }, - { - "uri":"modelarts_23_0168.html", - "node_id":"modelarts_23_0168.xml", - "product_code":"modelarts", - "code":"181", - "des":"AI engine: GPU-based Caffe 1.0; Environment: Python 2.7; Input and output mode: Undefined. Select an appropriate input and output mode based on the model function or appl", - "doc_type":"usermanual", - "kw":"Caffe-GPU-py27 General Template,Templates,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Caffe-GPU-py27 General Template", - "githuburl":"" - }, - { - "uri":"modelarts_23_0169.html", - "node_id":"modelarts_23_0169.xml", - "product_code":"modelarts", - "code":"182", - "des":"AI engine: CPU-based Caffe 1.0; Environment: Python 3.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or", - "doc_type":"usermanual", - "kw":"Caffe-CPU-py37 General Template,Templates,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Caffe-CPU-py37 General Template", - "githuburl":"" - }, - { - "uri":"modelarts_23_0170.html", - "node_id":"modelarts_23_0170.xml", - "product_code":"modelarts", - "code":"183", - "des":"AI engine: GPU-based Caffe 1.0; Environment: Python 3.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or", - "doc_type":"usermanual", - "kw":"Caffe-GPU-py37 General Template,Templates,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Caffe-GPU-py37 General Template", - "githuburl":"" - }, - { - "uri":"modelarts_23_0099.html", - "node_id":"modelarts_23_0099.xml", - "product_code":"modelarts", - "code":"184", - "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", - "doc_type":"usermanual", - "kw":"Input and Output Modes", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Input and Output Modes", - "githuburl":"" - }, - { - "uri":"modelarts_23_0100.html", - "node_id":"modelarts_23_0100.xml", - "product_code":"modelarts", - "code":"185", - "des":"This is a built-in input and output mode for object detection. The models using this mode are identified as object detection models. The prediction request path is /, the", - "doc_type":"usermanual", - "kw":"Built-in Object Detection Mode,Input and Output Modes,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Built-in Object Detection Mode", - "githuburl":"" - }, - { - "uri":"modelarts_23_0101.html", - "node_id":"modelarts_23_0101.xml", - "product_code":"modelarts", - "code":"186", - "des":"The built-in image processing input and output mode can be applied to models such as image classification, object detection, and image semantic segmentation. The predicti", - "doc_type":"usermanual", - "kw":"Built-in Image Processing Mode,Input and Output Modes,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Built-in Image Processing Mode", - "githuburl":"" - }, - { - "uri":"modelarts_23_0102.html", - "node_id":"modelarts_23_0102.xml", - "product_code":"modelarts", - "code":"187", - "des":"This is a built-in input and output mode for predictive analytics. The models using this mode are identified as predictive analytics models. The prediction request path i", - "doc_type":"usermanual", - "kw":"Built-in Predictive Analytics Mode,Input and Output Modes,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Built-in Predictive Analytics Mode", - "githuburl":"" - }, - { - "uri":"modelarts_23_0103.html", - "node_id":"modelarts_23_0103.xml", - "product_code":"modelarts", - "code":"188", - "des":"The undefined mode does not define the input and output mode. The input and output mode is determined by the model. Select this mode only when the existing input and outp", - "doc_type":"usermanual", - "kw":"Undefined Mode,Input and Output Modes,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Undefined Mode", - "githuburl":"" - }, - { - "uri":"modelarts_23_0172.html", - "node_id":"modelarts_23_0172.xml", - "product_code":"modelarts", - "code":"189", + "code":"227", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Examples of Custom Scripts", @@ -3847,18 +4442,18 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], "title":"Examples of Custom Scripts", "githuburl":"" }, { - "uri":"modelarts_23_0173.html", - "node_id":"modelarts_23_0173.xml", + "uri":"inference-modelarts-0079.html", + "node_id":"en-us_topic_0000001943974109.xml", "product_code":"modelarts", - "code":"190", - "des":"TensorFlow has two types of APIs: Keras and tf. Keras and tf use different code for training and saving models, but the same code for inference.Inference code must be inh", + "code":"228", + "des":"There are two types of TensorFlow APIs, Keras and tf. They use different code for training and saving models, but the same code for inference.In the model inference code ", "doc_type":"usermanual", "kw":"TensorFlow,Examples of Custom Scripts,User Guide", "search_title":"", @@ -3868,39 +4463,18 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], "title":"TensorFlow", "githuburl":"" }, { - "uri":"modelarts_23_0301.html", - "node_id":"modelarts_23_0301.xml", + "uri":"inference-modelarts-0082.html", + "node_id":"en-us_topic_0000001910014910.xml", "product_code":"modelarts", - "code":"191", - "des":"Inference code must be inherited from the BaseService class. For details about the import statements of different types of parent model classes, see Table 1.", - "doc_type":"usermanual", - "kw":"TensorFlow 2.1,Examples of Custom Scripts,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"TensorFlow 2.1", - "githuburl":"" - }, - { - "uri":"modelarts_23_0175.html", - "node_id":"modelarts_23_0175.xml", - "product_code":"modelarts", - "code":"192", - "des":"Inference code must be inherited from the BaseService class. For details about the import statements of different types of parent model classes, see Table 1.", + "code":"229", + "des":"In the model inference code file customize_service.py, add a child model class which inherits properties from its parent model class. For details about the import stateme", "doc_type":"usermanual", "kw":"PyTorch,Examples of Custom Scripts,User Guide", "search_title":"", @@ -3910,17 +4484,17 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], "title":"PyTorch", "githuburl":"" }, { - "uri":"modelarts_23_0176.html", - "node_id":"modelarts_23_0176.xml", + "uri":"inference-modelarts-0083.html", + "node_id":"en-us_topic_0000001910054938.xml", "product_code":"modelarts", - "code":"193", + "code":"230", "des":"lenet_train_test.prototxt filelenet_solver.prototxt fileTrain the model.The caffemodel file is generated after model training. Rewrite the lenet_train_test.prototxt file ", "doc_type":"usermanual", "kw":"Caffe,Examples of Custom Scripts,User Guide", @@ -3931,386 +4505,20 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], "title":"Caffe", "githuburl":"" }, - { - "uri":"modelarts_23_0177.html", - "node_id":"modelarts_23_0177.xml", - "product_code":"modelarts", - "code":"194", - "des":"Before training, download the iris.csv dataset, decompress it, and upload it to the /home/ma-user/work/ directory of the notebook instance. Download the iris.csv dataset ", - "doc_type":"usermanual", - "kw":"XGBoost,Examples of Custom Scripts,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"XGBoost", - "githuburl":"" - }, - { - "uri":"modelarts_23_0178.html", - "node_id":"modelarts_23_0178.xml", - "product_code":"modelarts", - "code":"195", - "des":"After the model is saved, it must be uploaded to the OBS directory before being published. The config.json configuration and the customize_service.py inference code must ", - "doc_type":"usermanual", - "kw":"Spark,Examples of Custom Scripts,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Spark", - "githuburl":"" - }, - { - "uri":"modelarts_23_0179.html", - "node_id":"modelarts_23_0179.xml", - "product_code":"modelarts", - "code":"196", - "des":"Before training, download the iris.csv dataset, decompress it, and upload it to the /home/ma-user/work/ directory of the notebook instance. Download the iris.csv dataset ", - "doc_type":"usermanual", - "kw":"Scikit Learn,Examples of Custom Scripts,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Scikit Learn", - "githuburl":"" - }, - { - "uri":"en-us_topic_0000001799497932.html", - "node_id":"en-us_topic_0000001799497932.xml", - "product_code":"modelarts", - "code":"197", - "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", - "doc_type":"usermanual", - "kw":"Using Custom Images", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Using Custom Images", - "githuburl":"" - }, - { - "uri":"modelarts_23_0084.html", - "node_id":"modelarts_23_0084.xml", - "product_code":"modelarts", - "code":"198", - "des":"Frequently-used images are preset in ModelArts. However, if you have special requirements for the deep learning engine or development library, the preset images cannot me", - "doc_type":"usermanual", - "kw":"Introduction to Custom Images,Using Custom Images,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "documenttype":"usermanual" - } - ], - "title":"Introduction to Custom Images", - "githuburl":"" - }, - { - "uri":"docker-modelarts_0017.html", - "node_id":"docker-modelarts_0017.xml", - "product_code":"modelarts", - "code":"199", - "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", - "doc_type":"usermanual", - "kw":"Using a Custom Image to Train Models (New-Version Training)", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "documenttype":"usermanual" - } - ], - "title":"Using a Custom Image to Train Models (New-Version Training)", - "githuburl":"" - }, - { - "uri":"develop-modelarts-0079.html", - "node_id":"develop-modelarts-0079.xml", - "product_code":"modelarts", - "code":"200", - "des":"When you use a locally developed model or training script to create a custom image, ensure that the custom image complies with the specifications defined by ModelArts.A c", - "doc_type":"usermanual", - "kw":"Specifications for Custom Images Used for Training Jobs,Using a Custom Image to Train Models (New-Ve", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "documenttype":"usermanual" - } - ], - "title":"Specifications for Custom Images Used for Training Jobs", - "githuburl":"" - }, - { - "uri":"docker-modelarts_0029.html", - "node_id":"docker-modelarts_0029.xml", - "product_code":"", - "code":"201", - "des":"To migrate an image to the new training management version, perform the following operations:Add the default user group ma-group (GID = 100) for the image of the new-vers", - "doc_type":"", - "kw":"Migrating an Image to ModelArts Training,Using a Custom Image to Train Models (New-Version Training)", - "search_title":"", - "metedata":[ - { - - } - ], - "title":"Migrating an Image to ModelArts Training", - "githuburl":"" - }, - { - "uri":"modelarts_23_0218.html", - "node_id":"modelarts_23_0218.xml", - "product_code":"", - "code":"202", - "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", - "doc_type":"", - "kw":"Using a Custom Image to Create AI applications", - "search_title":"", - "metedata":[ - { - - } - ], - "title":"Using a Custom Image to Create AI applications", - "githuburl":"" - }, - { - "uri":"modelarts_23_0219.html", - "node_id":"modelarts_23_0219.xml", - "product_code":"modelarts", - "code":"203", - "des":"When creating an image using locally developed models, ensure that they meet the specifications defined by ModelArts.Custom images cannot contain malicious code.A custom ", - "doc_type":"usermanual", - "kw":"Custom Image Specifications for Creating an AI Application,Using a Custom Image to Create AI applica", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "documenttype":"usermanual" - } - ], - "title":"Custom Image Specifications for Creating an AI Application", - "githuburl":"" - }, - { - "uri":"modelarts_23_0270.html", - "node_id":"modelarts_23_0270.xml", - "product_code":"modelarts", - "code":"204", - "des":"For AI engines that are not supported by ModelArts, you can import the models you compile to ModelArts from custom images for creating the AI applications. This section d", - "doc_type":"usermanual", - "kw":"Deploying an AI Application Created Using a Custom Image as a Service,Using a Custom Image to Create", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "documenttype":"usermanual" - } - ], - "title":"Deploying an AI Application Created Using a Custom Image as a Service", - "githuburl":"" - }, - { - "uri":"docker-modelarts_0016.html", - "node_id":"docker-modelarts_0016.xml", - "product_code":"", - "code":"205", - "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", - "doc_type":"", - "kw":"FAQ", - "search_title":"", - "metedata":[ - { - - } - ], - "title":"FAQ", - "githuburl":"" - }, - { - "uri":"docker-modelarts_0018.html", - "node_id":"docker-modelarts_0018.xml", - "product_code":"modelarts", - "code":"206", - "des":"This section describes how to upload images to SWR.Log in to the SWR console.Click Create Organization in the upper right corner and enter an organization name to create ", - "doc_type":"usermanual", - "kw":"How Can I Upload Images to SWR?,FAQ,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "documenttype":"usermanual" - } - ], - "title":"How Can I Upload Images to SWR?", - "githuburl":"" - }, - { - "uri":"docker-modelarts_0019.html", - "node_id":"docker-modelarts_0019.xml", - "product_code":"modelarts", - "code":"207", - "des":"In a Dockerfile, use the ENV instruction to configure environment variables. For details, see Dockerfile reference.", - "doc_type":"usermanual", - "kw":"How Do I Configure Environment Variables for an Image?,FAQ,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "documenttype":"usermanual" - } - ], - "title":"How Do I Configure Environment Variables for an Image?", - "githuburl":"" - }, - { - "uri":"modelarts_23_0076.html", - "node_id":"modelarts_23_0076.xml", - "product_code":"modelarts", - "code":"208", - "des":"When using ModelArts for full-process AI development, you can use two different resource pools.Public Resource Pool: provides public large-scale computing clusters, which", - "doc_type":"usermanual", - "kw":"Resource Pools,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Resource Pools", - "githuburl":"" - }, - { - "uri":"modelarts_23_0077.html", - "node_id":"modelarts_23_0077.xml", - "product_code":"modelarts", - "code":"209", - "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", - "doc_type":"usermanual", - "kw":"Permissions Management", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Permissions Management", - "githuburl":"" - }, - { - "uri":"modelarts_23_0078.html", - "node_id":"modelarts_23_0078.xml", - "product_code":"modelarts", - "code":"210", - "des":"A fine-grained policy is a set of permissions defining which operations on which cloud services can be performed. Each policy can define multiple permissions. After a pol", - "doc_type":"usermanual", - "kw":"Fine-grained Policy,Permissions Management,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Fine-grained Policy", - "githuburl":"" - }, - { - "uri":"modelarts_23_0079.html", - "node_id":"modelarts_23_0079.xml", - "product_code":"modelarts", - "code":"211", - "des":"A fine-grained policy consists of the policy version (the Version field) and statement (the Statement field).Version: Distinguishes between role-based access control (RBA", - "doc_type":"usermanual", - "kw":"Policy Language,Permissions Management,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Policy Language", - "githuburl":"" - }, - { - "uri":"modelarts_23_0080.html", - "node_id":"modelarts_23_0080.xml", - "product_code":"modelarts", - "code":"212", - "des":"If default policies cannot meet the requirements on fine-grained access control, you can create custom policies and assign the policies to the user group.You can create c", - "doc_type":"usermanual", - "kw":"Creating a Custom Policy,Permissions Management,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Creating a Custom Policy", - "githuburl":"" - }, { "uri":"modelarts_23_0186.html", - "node_id":"modelarts_23_0186.xml", + "node_id":"en-us_topic_0000001910054942.xml", "product_code":"modelarts", - "code":"213", + "code":"231", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", - "kw":"Monitoring", + "kw":"ModelArts Monitoring on Cloud Eye", "search_title":"", "metedata":[ { @@ -4318,20 +4526,20 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], - "title":"Monitoring", + "title":"ModelArts Monitoring on Cloud Eye", "githuburl":"" }, { "uri":"modelarts_23_0187.html", - "node_id":"modelarts_23_0187.xml", + "node_id":"en-us_topic_0000001943974129.xml", "product_code":"modelarts", - "code":"214", + "code":"232", "des":"The cloud service platform provides Cloud Eye to help you better understand the status of your ModelArts real-time services and models. You can use Cloud Eye to automatic", "doc_type":"usermanual", - "kw":"ModelArts Metrics,Monitoring,User Guide", + "kw":"ModelArts Metrics,ModelArts Monitoring on Cloud Eye,User Guide", "search_title":"", "metedata":[ { @@ -4339,7 +4547,7 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], "title":"ModelArts Metrics", @@ -4347,12 +4555,12 @@ }, { "uri":"modelarts_23_0188.html", - "node_id":"modelarts_23_0188.xml", + "node_id":"en-us_topic_0000001910014866.xml", "product_code":"modelarts", - "code":"215", + "code":"233", "des":"Setting alarm rules allows you to customize the monitored objects and notification policies so that you can know the status of ModelArts real-time services and models in ", "doc_type":"usermanual", - "kw":"Setting Alarm Rules,Monitoring,User Guide", + "kw":"Setting Alarm Rules,ModelArts Monitoring on Cloud Eye,User Guide", "search_title":"", "metedata":[ { @@ -4360,7 +4568,7 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], "title":"Setting Alarm Rules", @@ -4368,12 +4576,12 @@ }, { "uri":"modelarts_23_0189.html", - "node_id":"modelarts_23_0189.xml", + "node_id":"en-us_topic_0000001943974125.xml", "product_code":"modelarts", - "code":"216", + "code":"234", "des":"Cloud Eye on the cloud service platform monitors the status of ModelArts real-time services and model loads. You can obtain the monitoring metrics of each ModelArts real-", "doc_type":"usermanual", - "kw":"Viewing Monitoring Metrics,Monitoring,User Guide", + "kw":"Viewing Monitoring Metrics,ModelArts Monitoring on Cloud Eye,User Guide", "search_title":"", "metedata":[ { @@ -4381,80 +4589,705 @@ "opensource":"true", "documenttype":"usermanual", "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes" } ], "title":"Viewing Monitoring Metrics", "githuburl":"" }, { - "uri":"modelarts_23_0249.html", - "node_id":"modelarts_23_0249.xml", + "uri":"modelarts_77_0152.html", + "node_id":"en-us_topic_0000001919187096.xml", "product_code":"modelarts", - "code":"217", + "code":"235", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", - "kw":"Audit Logs", + "kw":"Using Custom Images", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], - "title":"Audit Logs", + "title":"Using Custom Images", "githuburl":"" }, { - "uri":"modelarts_23_0250.html", - "node_id":"modelarts_23_0250.xml", + "uri":"modelarts_23_0084.html", + "node_id":"en-us_topic_0000001948506069.xml", "product_code":"modelarts", - "code":"218", - "des":"With CTS, you can record operations associated with ModelArts for later query, audit, and backtrack operations.CTS has been enabled. For details, see Enabling CTS", + "code":"236", + "des":"Frequently-used images are preset in ModelArts. However, if you have special requirements for the deep learning engine or development library, the preset images cannot me", "doc_type":"usermanual", - "kw":"Key Operations Recorded by CTS,Audit Logs,User Guide", + "kw":"Introduction to Custom Images,Using Custom Images,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], - "title":"Key Operations Recorded by CTS", + "title":"Introduction to Custom Images", "githuburl":"" }, { - "uri":"modelarts_23_0251.html", - "node_id":"modelarts_23_0251.xml", + "uri":"docker-modelarts_0017.html", + "node_id":"en-us_topic_0000001919027156.xml", "product_code":"modelarts", - "code":"219", - "des":"After CTS is enabled, CTS starts recording operations related to ModelArts. The CTS management console stores the last seven days of operation records. This section descr", + "code":"237", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", - "kw":"Viewing Audit Logs,Audit Logs,User Guide", + "kw":"Using a Custom Image to Train Models (New-Version Training)", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "documenttype":"usermanual", + "IsBot":"No" + } + ], + "title":"Using a Custom Image to Train Models (New-Version Training)", + "githuburl":"" + }, + { + "uri":"develop-modelarts-0079.html", + "node_id":"en-us_topic_0000001919187100.xml", + "product_code":"modelarts", + "code":"238", + "des":"When you use a locally developed model or training script to create a custom image, ensure that the custom image complies with the specifications defined by ModelArts.A c", + "doc_type":"usermanual", + "kw":"Specifications for Custom Images Used for Training Jobs,Using a Custom Image to Train Models (New-Ve", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "documenttype":"usermanual", + "IsBot":"No" + } + ], + "title":"Specifications for Custom Images Used for Training Jobs", + "githuburl":"" + }, + { + "uri":"docker-modelarts_0029.html", + "node_id":"en-us_topic_0000001948506073.xml", + "product_code":"modelarts", + "code":"239", + "des":"To migrate an image to the new training management version, perform the following operations:Add the default user group ma-group (GID = 100) for the image of the new-vers", + "doc_type":"usermanual", + "kw":"Migrating an Image to ModelArts Training,Using a Custom Image to Train Models (New-Version Training)", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "documenttype":"usermanual", + "IsBot":"No" + } + ], + "title":"Migrating an Image to ModelArts Training", + "githuburl":"" + }, + { + "uri":"modelarts_23_0218.html", + "node_id":"en-us_topic_0000001919027160.xml", + "product_code":"modelarts", + "code":"240", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Using a Custom Image to Create AI applications", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "documenttype":"usermanual", + "IsBot":"No" + } + ], + "title":"Using a Custom Image to Create AI applications", + "githuburl":"" + }, + { + "uri":"modelarts_23_0219.html", + "node_id":"en-us_topic_0000001919187104.xml", + "product_code":"modelarts", + "code":"241", + "des":"When creating an image using locally developed models, ensure that they meet the specifications defined by ModelArts.Custom images cannot contain malicious code.A custom ", + "doc_type":"usermanual", + "kw":"Custom Image Specifications for Creating an AI Application,Using a Custom Image to Create AI applica", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "documenttype":"usermanual", + "IsBot":"No" + } + ], + "title":"Custom Image Specifications for Creating an AI Application", + "githuburl":"" + }, + { + "uri":"modelarts_23_0270.html", + "node_id":"en-us_topic_0000001948506077.xml", + "product_code":"modelarts", + "code":"242", + "des":"For AI engines that are not supported by ModelArts, you can import the models you compile to ModelArts from custom images for creating the AI applications. This section d", + "doc_type":"usermanual", + "kw":"Deploying an AI Application Created Using a Custom Image as a Service,Using a Custom Image to Create", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "documenttype":"usermanual", + "IsBot":"No" + } + ], + "title":"Deploying an AI Application Created Using a Custom Image as a Service", + "githuburl":"" + }, + { + "uri":"docker-modelarts_0016.html", + "node_id":"en-us_topic_0000001919027164.xml", + "product_code":"modelarts", + "code":"243", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"FAQ", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "documenttype":"usermanual", + "IsBot":"No" + } + ], + "title":"FAQ", + "githuburl":"" + }, + { + "uri":"docker-modelarts_0018.html", + "node_id":"en-us_topic_0000001919187108.xml", + "product_code":"modelarts", + "code":"244", + "des":"This section describes how to upload images to SWR.Log in to the SWR console.Click Create Organization in the upper right corner and enter an organization name to create ", + "doc_type":"usermanual", + "kw":"How Can I Upload Images to SWR?,FAQ,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "documenttype":"usermanual", + "IsBot":"No" + } + ], + "title":"How Can I Upload Images to SWR?", + "githuburl":"" + }, + { + "uri":"docker-modelarts_0019.html", + "node_id":"en-us_topic_0000001948506081.xml", + "product_code":"modelarts", + "code":"245", + "des":"In a Dockerfile, use the ENV instruction to configure environment variables. For details, see Dockerfile reference.", + "doc_type":"usermanual", + "kw":"How Do I Configure Environment Variables for an Image?,FAQ,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "documenttype":"usermanual", + "IsBot":"No" + } + ], + "title":"How Do I Configure Environment Variables for an Image?", + "githuburl":"" + }, + { + "uri":"modelarts_77_0150.html", + "node_id":"en-us_topic_0000001910010632.xml", + "product_code":"modelarts", + "code":"246", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Resource Management", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "documenttype":"usermanual", + "IsBot":"No" + } + ], + "title":"Resource Management", + "githuburl":"" + }, + { + "uri":"resmgmt-modelarts_0001.html", + "node_id":"en-us_topic_0000001943982393.xml", + "product_code":"modelarts", + "code":"247", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"New-Version Elastic Clusters", "search_title":"", "metedata":[ { "prodname":"modelarts", "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"Yes", + "IsMulti":"Yes" } ], - "title":"Viewing Audit Logs", + "title":"New-Version Elastic Clusters", "githuburl":"" }, { - "uri":"modelarts_05_0000.html", - "node_id":"modelarts_05_0000.xml", + "uri":"resmgmt-modelarts_0002.html", + "node_id":"en-us_topic_0000001943982433.xml", "product_code":"modelarts", - "code":"220", + "code":"248", + "des":"ModelArts dedicated resource pools have been upgraded. In the new system, there are only unified ModelArts dedicated resource pools, which are no longer classified as the", + "doc_type":"usermanual", + "kw":"Comprehensive Upgrades to ModelArts Resource Pool Management Functions,New-Version Elastic Clusters,", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" + } + ], + "title":"Comprehensive Upgrades to ModelArts Resource Pool Management Functions", + "githuburl":"" + }, + { + "uri":"resmgmt-modelarts_0003.html", + "node_id":"en-us_topic_0000001910023178.xml", + "product_code":"modelarts", + "code":"249", + "des":"When using ModelArts for AI development, you can use either of the following resource pools:Dedicated Resource Pool: provides exclusive compute resources, which can be us", + "doc_type":"usermanual", + "kw":"Resource Pool,New-Version Elastic Clusters,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" + } + ], + "title":"Resource Pool", + "githuburl":"" + }, + { + "uri":"resmgmt-modelarts_0004.html", + "node_id":"en-us_topic_0000001910063182.xml", + "product_code":"modelarts", + "code":"250", + "des":"This section describes how to create a dedicated resource pool.Log in to the ModelArts management console. In the navigation pane, choose Dedicated Resource Pools > Elast", + "doc_type":"usermanual", + "kw":"Creating a Resource Pool,New-Version Elastic Clusters,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" + } + ], + "title":"Creating a Resource Pool", + "githuburl":"" + }, + { + "uri":"resmgmt-modelarts_0005.html", + "node_id":"en-us_topic_0000001910063190.xml", + "product_code":"modelarts", + "code":"251", + "des":"Log in to the ModelArts management console. In the navigation pane, choose Dedicated Resource Pools > Elastic Cluster.In the resource pool list, click a resource pool to ", + "doc_type":"usermanual", + "kw":"Viewing Details About a Resource Pool,New-Version Elastic Clusters,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" + } + ], + "title":"Viewing Details About a Resource Pool", + "githuburl":"" + }, + { + "uri":"resmgmt-modelarts_0006.html", + "node_id":"en-us_topic_0000001910023198.xml", + "product_code":"modelarts", + "code":"252", + "des":"The demand for resources in a dedicated resource pool may change due to the changes of AI development services. In this case, you can add or delete nodes in your dedicate", + "doc_type":"usermanual", + "kw":"Resizing a Resource Pool,New-Version Elastic Clusters,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" + } + ], + "title":"Resizing a Resource Pool", + "githuburl":"" + }, + { + "uri":"resmgmt-modelarts_0008.html", + "node_id":"en-us_topic_0000001910023186.xml", + "product_code":"modelarts", + "code":"253", + "des":"ModelArts supports many types of jobs. Some of them can run in dedicated resource pools, including training jobs, inference services, and notebook development environment", + "doc_type":"usermanual", + "kw":"Changing Job Types Supported by a Resource Pool,New-Version Elastic Clusters,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" + } + ], + "title":"Changing Job Types Supported by a Resource Pool", + "githuburl":"" + }, + { + "uri":"resmgmt-modelarts_0009.html", + "node_id":"en-us_topic_0000001910063226.xml", + "product_code":"modelarts", + "code":"254", + "des":"If GPUs or Ascend resources are used in a dedicated resource pool, you may need to customize GPU or Ascend drivers. ModelArts allows you to upgrade GPU or Ascend drivers ", + "doc_type":"usermanual", + "kw":"Upgrading a Resource Pool Driver,New-Version Elastic Clusters,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" + } + ], + "title":"Upgrading a Resource Pool Driver", + "githuburl":"" + }, + { + "uri":"resmgmt-modelarts_0010.html", + "node_id":"en-us_topic_0000001943982397.xml", + "product_code":"modelarts", + "code":"255", + "des":"If a dedicated resource pool is no longer needed for AI service development, you can delete the resource pool to release resources.After a dedicated resource pool is dele", + "doc_type":"usermanual", + "kw":"Deleting a Resource Pool,New-Version Elastic Clusters,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" + } + ], + "title":"Deleting a Resource Pool", + "githuburl":"" + }, + { + "uri":"resmgmt-modelarts_0011.html", + "node_id":"en-us_topic_0000001910063194.xml", + "product_code":"modelarts", + "code":"256", + "des":"Log in to the ModelArts management console. In the navigation pane, choose Dedicated Resource Pools > Elastic Cluster.Click Failure Records on the right of Create. On the", + "doc_type":"usermanual", + "kw":"Abnormal Status of a Dedicated Resource Pool,New-Version Elastic Clusters,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" + } + ], + "title":"Abnormal Status of a Dedicated Resource Pool", + "githuburl":"" + }, + { + "uri":"resmgmt-modelarts_0012.html", + "node_id":"en-us_topic_0000001943982401.xml", + "product_code":"modelarts", + "code":"257", + "des":"ModelArts networks are used for interconnecting nodes in a ModelArts resource pool. You can only configure the name and CIDR block for a network. To ensure that there is ", + "doc_type":"usermanual", + "kw":"ModelArts Network,New-Version Elastic Clusters,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" + } + ], + "title":"ModelArts Network", + "githuburl":"" + }, + { + "uri":"modelarts_23_0076.html", + "node_id":"en-us_topic_0000001909852012.xml", + "product_code":"modelarts", + "code":"258", + "des":"When using ModelArts for full-process AI development, you can use two different resource pools.Public Resource Pool: provides public large-scale computing clusters, which", + "doc_type":"usermanual", + "kw":"Old-Version Elastic Clusters,Resource Management,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" + } + ], + "title":"Old-Version Elastic Clusters", + "githuburl":"" + }, + { + "uri":"modelarts_77_0153.html", + "node_id":"en-us_topic_0000001910010620.xml", + "product_code":"modelarts", + "code":"259", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Permissions Management", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "documenttype":"usermanual", + "IsBot":"No" + } + ], + "title":"Permissions Management", + "githuburl":"" + }, + { + "uri":"modelarts_24_0078.html", + "node_id":"en-us_topic_0000001910009788.xml", + "product_code":"modelarts", + "code":"260", + "des":"ModelArts allows you to configure fine-grained permissions for refined management of resources and permissions. This is commonly used by large enterprises, but it is comp", + "doc_type":"usermanual", + "kw":"Basic Concepts,Permissions Management,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" + } + ], + "title":"Basic Concepts", + "githuburl":"" + }, + { + "uri":"modelarts_24_0079.html", + "node_id":"en-us_topic_0000001909849772.xml", + "product_code":"modelarts", + "code":"261", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Permission Management Mechanisms", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" + } + ], + "title":"Permission Management Mechanisms", + "githuburl":"" + }, + { + "uri":"modelarts_24_0080.html", + "node_id":"en-us_topic_0000001909849784.xml", + "product_code":"modelarts", + "code":"262", + "des":"This section describes the IAM permission configurations for all ModelArts functions.If no fine-grained authorization policy is configured for a user created by the admin", + "doc_type":"usermanual", + "kw":"IAM,Permission Management Mechanisms,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" + } + ], + "title":"IAM", + "githuburl":"" + }, + { + "uri":"modelarts_24_0081.html", + "node_id":"en-us_topic_0000001910009776.xml", + "product_code":"modelarts", + "code":"263", + "des":"Function Dependency PoliciesWhen using ModelArts to develop algorithms or manage training jobs, you are required to use other Cloud services. For example, before submitti", + "doc_type":"usermanual", + "kw":"Agencies and Dependencies,Permission Management Mechanisms,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" + } + ], + "title":"Agencies and Dependencies", + "githuburl":"" + }, + { + "uri":"modelarts_24_0082.html", + "node_id":"en-us_topic_0000001909849764.xml", + "product_code":"modelarts", + "code":"264", + "des":"ModelArts allows you to create multiple workspaces to develop algorithms and manage and deploy models for different service objectives. In this way, the development outpu", + "doc_type":"usermanual", + "kw":"Workspace,Permission Management Mechanisms,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" + } + ], + "title":"Workspace", + "githuburl":"" + }, + { + "uri":"modelarts_24_0084.html", + "node_id":"en-us_topic_0000001909849780.xml", + "product_code":"modelarts", + "code":"265", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Configuration Practices in Typical Scenarios", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" + } + ], + "title":"Configuration Practices in Typical Scenarios", + "githuburl":"" + }, + { + "uri":"modelarts_24_0085.html", + "node_id":"en-us_topic_0000001943968981.xml", + "product_code":"modelarts", + "code":"266", + "des":"Certain ModelArts functions require access to Object Storage Service (OBS), Software Repository for Container (SWR), and Intelligent EdgeFabric (IEF). Before using ModelA", + "doc_type":"usermanual", + "kw":"Assigning Permissions to Individual Users for Using ModelArts,Configuration Practices in Typical Sce", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" + } + ], + "title":"Assigning Permissions to Individual Users for Using ModelArts", + "githuburl":"" + }, + { + "uri":"modelarts_24_0093.html", + "node_id":"en-us_topic_0000001910009780.xml", + "product_code":"modelarts", + "code":"267", + "des":"In small- and medium-sized teams, administrators need to globally control ModelArts resources, and developers only need to focus on their own instances. By default, a dev", + "doc_type":"usermanual", + "kw":"Separately Assigning Permissions to Administrators and Developers,Configuration Practices in Typical", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" + } + ], + "title":"Separately Assigning Permissions to Administrators and Developers", + "githuburl":"" + }, + { + "uri":"modelarts_24_0097.html", + "node_id":"en-us_topic_0000001910009772.xml", + "product_code":"modelarts", + "code":"268", + "des":"This section describes how to control the ModelArts permissions of a user so that the user is not allowed to use a public resource pool to create training jobs, create no", + "doc_type":"usermanual", + "kw":"Prohibiting a User from Using a Public Resource Pool,Configuration Practices in Typical Scenarios,Us", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "opensource":"true", + "documenttype":"usermanual", + "IsBot":"Yes", + "IsMulti":"Yes" + } + ], + "title":"Prohibiting a User from Using a Public Resource Pool", + "githuburl":"" + }, + { + "uri":"modelarts_77_0154.html", + "node_id":"en-us_topic_0000001943969829.xml", + "product_code":"modelarts", + "code":"269", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"FAQs", @@ -4462,10 +5295,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"FAQs", @@ -4473,9 +5304,9 @@ }, { "uri":"modelarts_05_0014.html", - "node_id":"modelarts_05_0014.xml", + "node_id":"en-us_topic_0000001943977377.xml", "product_code":"modelarts", - "code":"221", + "code":"270", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"General Issues", @@ -4483,10 +5314,9 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], "title":"General Issues", @@ -4494,9 +5324,9 @@ }, { "uri":"modelarts_05_0001.html", - "node_id":"modelarts_05_0001.xml", + "node_id":"en-us_topic_0000001910018138.xml", "product_code":"modelarts", - "code":"222", + "code":"271", "des":"ModelArts is a one-stop AI development platform geared toward developers and data scientists of all skill levels. It enables you to rapidly build, train, and deploy model", "doc_type":"usermanual", "kw":"What Is ModelArts?,General Issues,User Guide", @@ -4504,10 +5334,9 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], "title":"What Is ModelArts?", @@ -4515,9 +5344,9 @@ }, { "uri":"modelarts_05_0003.html", - "node_id":"modelarts_05_0003.xml", + "node_id":"en-us_topic_0000001910059826.xml", "product_code":"modelarts", - "code":"223", + "code":"272", "des":"ModelArts uses Object Storage Service (OBS) to securely and reliably store data and models at low costs. For more details, see Object Storage Service Console Operation Gu", "doc_type":"usermanual", "kw":"What Are the Relationships Between ModelArts and Other Services?,General Issues,User Guide", @@ -4525,20 +5354,39 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], "title":"What Are the Relationships Between ModelArts and Other Services?", "githuburl":"" }, { - "uri":"modelarts_05_0004.html", - "node_id":"modelarts_05_0004.xml", + "uri":"modelarts_05_0052.html", + "node_id":"en-us_topic_0000001943977681.xml", "product_code":"modelarts", - "code":"224", + "code":"273", + "des":"Deep Learning Service (DLS) is a one-stop deep learning platform . With various optimized neural network models, DLS allows you to easily implement model training and eva", + "doc_type":"usermanual", + "kw":"What Are the Differences Between ModelArts and DLS?,General Issues,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Are the Differences Between ModelArts and DLS?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0004.html", + "node_id":"en-us_topic_0000001943977517.xml", + "product_code":"modelarts", + "code":"274", "des":"Log in to the console, enter the My Credentials page, and choose Access Keys > Create Access Key.In the Create Access Key dialog box that is displayed, use the login pass", "doc_type":"usermanual", "kw":"How Do I Obtain an Access Key?,General Issues,User Guide", @@ -4546,10 +5394,9 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], "title":"How Do I Obtain an Access Key?", @@ -4557,9 +5404,9 @@ }, { "uri":"modelarts_05_0013.html", - "node_id":"modelarts_05_0013.xml", + "node_id":"en-us_topic_0000001910058210.xml", "product_code":"modelarts", - "code":"225", + "code":"275", "des":"Before using ModelArts to develop AI models, data needs to be uploaded to an OBS bucket. You can log in to the OBS console to create an OBS bucket, create a folder in it,", "doc_type":"usermanual", "kw":"How Do I Upload Data to OBS?,General Issues,User Guide", @@ -4567,20 +5414,139 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], "title":"How Do I Upload Data to OBS?", "githuburl":"" }, { - "uri":"modelarts_05_0128.html", - "node_id":"modelarts_05_0128.xml", + "uri":"modelarts_05_0019.html", + "node_id":"en-us_topic_0000001910018254.xml", "product_code":"modelarts", - "code":"226", + "code":"276", + "des":"An AK and SK form a key pair required for accessing OBS. Each SK corresponds to a specific AK, and each AK corresponds to a specific user. If the system displays a messag", + "doc_type":"usermanual", + "kw":"What Do I Do If the System Displays a Message Indicating that the AK/SK Pair Is Unavailable?,General", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If the System Displays a Message Indicating that the AK/SK Pair Is Unavailable?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0041.html", + "node_id":"en-us_topic_0000001943977665.xml", + "product_code":"modelarts", + "code":"277", + "des":"For more advanced users, ModelArts provides the notebook creation function of DevEnviron for code development. It allows the users to create training tasks with large vol", + "doc_type":"usermanual", + "kw":"How Do I Use ModelArts to Train Models Based on Structured Data?,General Issues,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Use ModelArts to Train Models Based on Structured Data?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0073.html", + "node_id":"en-us_topic_0000001910018690.xml", + "product_code":"modelarts", + "code":"278", + "des":"If an OBS directory needs to be specified for using ModelArts functions, such as creating training jobs and datasets, ensure that the OBS bucket and ModelArts are in the ", + "doc_type":"usermanual", + "kw":"How Do I Check Whether ModelArts and an OBS Bucket Are in the Same Region?,General Issues,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Check Whether ModelArts and an OBS Bucket Are in the Same Region?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0077.html", + "node_id":"en-us_topic_0000001910018522.xml", + "product_code":"modelarts", + "code":"279", + "des":"To view all files stored in OBS when using notebook instances or training jobs, use either of the following methods:OBS consoleLog in to OBS console using the current acc", + "doc_type":"usermanual", + "kw":"How Do I View All Files Stored in OBS on ModelArts?,General Issues,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I View All Files Stored in OBS on ModelArts?", + "githuburl":"" + }, + { + "uri":"modelarts_06_0021.html", + "node_id":"en-us_topic_0000001910058586.xml", + "product_code":"modelarts", + "code":"280", + "des":"Message \"Error: stat:403\" is displayed when I use mox.file.copy_parallel in ModelArts to perform operations on OBS.ModelArts uses an AK/SK for authentication globally, an", + "doc_type":"usermanual", + "kw":"Why Error: 403 Forbidden Is Displayed When I Perform Operations on OBS?,General Issues,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Why Error: 403 Forbidden Is Displayed When I Perform Operations on OBS?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0079.html", + "node_id":"en-us_topic_0000001943977801.xml", + "product_code":"modelarts", + "code":"281", + "des":"Datasets of ModelArts and data in specific data storage locations are stored in OBS.", + "doc_type":"usermanual", + "kw":"Where Are Datasets of ModelArts Stored in a Container?,General Issues,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Where Are Datasets of ModelArts Stored in a Container?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0128.html", + "node_id":"en-us_topic_0000001910058426.xml", + "product_code":"modelarts", + "code":"282", "des":"The AI frameworks and versions supported by ModelArts vary slightly based on the development environment notebook, training jobs, and model inference (AI application mana", "doc_type":"usermanual", "kw":"Which AI Frameworks Does ModelArts Support?,General Issues,User Guide", @@ -4588,209 +5554,59 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], "title":"Which AI Frameworks Does ModelArts Support?", "githuburl":"" }, { - "uri":"modelarts_05_0015.html", - "node_id":"modelarts_05_0015.xml", + "uri":"modelarts_05_0136.html", + "node_id":"en-us_topic_0000001910058542.xml", "product_code":"modelarts", - "code":"227", - "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "code":"283", + "des":"ModelArts training includes ExeML, training management, and dedicated resource pools (for development/training).ModelArts inference includes AI application management and", "doc_type":"usermanual", - "kw":"ExeML", + "kw":"What Are the Functions of ModelArts Training and Inference?,General Issues,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], - "title":"ExeML", + "title":"What Are the Functions of ModelArts Training and Inference?", "githuburl":"" }, { - "uri":"modelarts_05_0002.html", - "node_id":"modelarts_05_0002.xml", + "uri":"modelarts_06_0001.html", + "node_id":"en-us_topic_0000001910058518.xml", "product_code":"modelarts", - "code":"228", - "des":"ExeML is the process of automating model design, parameter tuning, and model training, compression, and deployment with the labeled data. The process is free of coding an", + "code":"284", + "des":"After a model with multiple labels is trained and deployed as a real-time service, all the labels are identified. If only one type of label needs to be identified, train ", "doc_type":"usermanual", - "kw":"What Is ExeML?,ExeML,User Guide", + "kw":"Can AI-assisted Identification of ModelArts Identify a Specific Label?,General Issues,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], - "title":"What Is ExeML?", - "githuburl":"" - }, - { - "uri":"modelarts_05_0018.html", - "node_id":"modelarts_05_0018.xml", - "product_code":"modelarts", - "code":"229", - "des":"Image classification is an image processing method that separates different classes of targets according to the features reflected in the images. With quantitative analys", - "doc_type":"usermanual", - "kw":"What Are Image Classification and Object Detection?,ExeML,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"What Are Image Classification and Object Detection?", - "githuburl":"" - }, - { - "uri":"modelarts_05_0005.html", - "node_id":"modelarts_05_0005.xml", - "product_code":"modelarts", - "code":"230", - "des":"The Train button turns to be available when the training images for an image classification project are classified into at least two categories, and each category contain", - "doc_type":"usermanual", - "kw":"What Should I Do When the Train Button Is Unavailable After I Create an Image Classification Project", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"What Should I Do When the Train Button Is Unavailable After I Create an Image Classification Project and Label the Images?", - "githuburl":"" - }, - { - "uri":"modelarts_05_0006.html", - "node_id":"modelarts_05_0006.xml", - "product_code":"modelarts", - "code":"231", - "des":"Yes. You can add multiple labels to an image.", - "doc_type":"usermanual", - "kw":"Can I Add Multiple Labels to an Image for an Object Detection Project?,ExeML,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Can I Add Multiple Labels to an Image for an Object Detection Project?", - "githuburl":"" - }, - { - "uri":"modelarts_05_0008.html", - "node_id":"modelarts_05_0008.xml", - "product_code":"modelarts", - "code":"232", - "des":"Models created in ExeML are deployed as real-time services. You can add images or compile code to test the services, as well as call the APIs using the URLs.After model d", - "doc_type":"usermanual", - "kw":"What Type of Service Is Deployed in ExeML?,ExeML,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"What Type of Service Is Deployed in ExeML?", - "githuburl":"" - }, - { - "uri":"modelarts_05_0010.html", - "node_id":"modelarts_05_0010.xml", - "product_code":"modelarts", - "code":"233", - "des":"Images in JPG, JPEG, PNG, or BMP format are supported.", - "doc_type":"usermanual", - "kw":"What Formats of Images Are Supported by Object Detection or Image Classification Projects?,ExeML,Use", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"What Formats of Images Are Supported by Object Detection or Image Classification Projects?", - "githuburl":"" - }, - { - "uri":"modelarts_05_0502.html", - "node_id":"modelarts_05_0502.xml", - "product_code":"modelarts", - "code":"234", - "des":"If an image classification or object detection algorithm of ExeML is used, after the labeled data is trained, the training result is an image error. Table 1 lists solutio", - "doc_type":"usermanual", - "kw":"What Do I Do If an Image Error Occurred During Model Training Using ExeML?,ExeML,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"What Do I Do If an Image Error Occurred During Model Training Using ExeML?", - "githuburl":"" - }, - { - "uri":"modelarts_05_0179.html", - "node_id":"modelarts_05_0179.xml", - "product_code":"modelarts", - "code":"235", - "des":"ModelArts ExeML supports image classification, object detection, predictive analytics, sound classification, and text classification projects. Up to 100 ExeML projects ca", - "doc_type":"usermanual", - "kw":"Is There a Limit on the Number of ExeML Projects That Can Be Created?,ExeML,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Is There a Limit on the Number of ExeML Projects That Can Be Created?", + "title":"Can AI-assisted Identification of ModelArts Identify a Specific Label?", "githuburl":"" }, { "uri":"modelarts_05_0101.html", - "node_id":"modelarts_05_0101.xml", + "node_id":"en-us_topic_0000001943977461.xml", "product_code":"modelarts", - "code":"236", + "code":"285", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Data Management", @@ -4798,167 +5614,19 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], "title":"Data Management", "githuburl":"" }, - { - "uri":"modelarts_05_0103.html", - "node_id":"modelarts_05_0103.xml", - "product_code":"modelarts", - "code":"237", - "des":"Failed to use the manifest file of the published dataset to import data again.Data has been changed in the OBS directory of the published dataset, for example, images hav", - "doc_type":"usermanual", - "kw":"Why Does Data Fail to Be Imported Using the Manifest File?,Data Management,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Why Does Data Fail to Be Imported Using the Manifest File?", - "githuburl":"" - }, - { - "uri":"modelarts_05_0125.html", - "node_id":"modelarts_05_0125.xml", - "product_code":"modelarts", - "code":"238", - "des":"Images in a created dataset cannot be displayed during labeling, and they cannot be viewed by clicking them. Alternatively, the system displays a message indicating that ", - "doc_type":"usermanual", - "kw":"What Do I Do If Images in a Dataset Cannot Be Displayed?,Data Management,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"What Do I Do If Images in a Dataset Cannot Be Displayed?", - "githuburl":"" - }, - { - "uri":"modelarts_05_3148.html", - "node_id":"modelarts_05_3148.xml", - "product_code":"modelarts", - "code":"239", - "des":"The possible cause is that the storage class of the target OBS bucket is incorrect. In this case, select a bucket of the standard storage class to import data.", - "doc_type":"usermanual", - "kw":"What Do I Do If Importing a Dataset Failed?,Data Management,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"What Do I Do If Importing a Dataset Failed?", - "githuburl":"" - }, - { - "uri":"modelarts_05_0193.html", - "node_id":"modelarts_05_0193.xml", - "product_code":"modelarts", - "code":"240", - "des":"The ModelArts console provides data visualization capabilities, which allows you to view detailed data and labeling information on the console. To learn more about the pa", - "doc_type":"usermanual", - "kw":"Where Are Labeling Results Stored?,Data Management,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Where Are Labeling Results Stored?", - "githuburl":"" - }, - { - "uri":"modelarts_05_0194.html", - "node_id":"modelarts_05_0194.xml", - "product_code":"modelarts", - "code":"241", - "des":"After being published, the labeling information and data in ModelArts datasets are stored as manifest files in the OBS path set for Output Dataset Path.To obtain the OBS ", - "doc_type":"usermanual", - "kw":"How Do I Download Labeling Results to a Local PC?,Data Management,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"How Do I Download Labeling Results to a Local PC?", - "githuburl":"" - }, - { - "uri":"modelarts_05_0509.html", - "node_id":"modelarts_05_0509.xml", - "product_code":"modelarts", - "code":"242", - "des":"Ensure that the created bucket and ModelArts are in the same region. Additionally, the bucket is not encrypted. ModelArts does not support encrypted OBS buckets.", - "doc_type":"usermanual", - "kw":"Why Is My Newly Created Bucket Unavailable?,Data Management,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Why Is My Newly Created Bucket Unavailable?", - "githuburl":"" - }, - { - "uri":"modelarts_05_0511.html", - "node_id":"modelarts_05_0511.xml", - "product_code":"modelarts", - "code":"243", - "des":"The version list can be zoomed in or out. Zoom out the page before searching.Click the name of the target dataset to go to the dataset overview page. Then, zoom out the V", - "doc_type":"usermanual", - "kw":"Why Is My New Dataset Version Unavailable in Versions?,Data Management,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Why Is My New Dataset Version Unavailable in Versions?", - "githuburl":"" - }, { "uri":"modelarts_05_0102.html", - "node_id":"modelarts_05_0102.xml", + "node_id":"en-us_topic_0000001943977549.xml", "product_code":"modelarts", - "code":"244", + "code":"286", "des":"For data management, there are limits on the image size when you upload images to the datasets whose labeling type is object detection or image classification. The size o", "doc_type":"usermanual", "kw":"Are There Size Limits for Images to be Uploaded?,Data Management,User Guide", @@ -4966,20 +5634,339 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], "title":"Are There Size Limits for Images to be Uploaded?", "githuburl":"" }, { - "uri":"modelarts_05_0505.html", - "node_id":"modelarts_05_0505.xml", + "uri":"modelarts_05_3146.html", + "node_id":"en-us_topic_0000001943977425.xml", "product_code":"modelarts", - "code":"245", + "code":"287", + "des":"Create a parent directory in an OBS bucket, in the directory add the same number of folders as that of datasets, export one dataset to one folder, and use the parent dire", + "doc_type":"usermanual", + "kw":"How Do I Integrate Multiple Object Detection Datasets into One Dataset?,Data Management,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Integrate Multiple Object Detection Datasets into One Dataset?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3149.html", + "node_id":"en-us_topic_0000001910058662.xml", + "product_code":"modelarts", + "code":"288", + "des":"Table datasets cannot be labeled. They are suitable for processing structured data such as tables. Table files are in CSV format. You can preview up to 100 data records i", + "doc_type":"usermanual", + "kw":"Can a Table Dataset Be Labeled?,Data Management,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Can a Table Dataset Be Labeled?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0139.html", + "node_id":"en-us_topic_0000001910018590.xml", + "product_code":"modelarts", + "code":"289", + "des":"ModelArts allows you to import data by importing datasets. Locally labeled data can be imported from an OBS directory or the manifest file. After the import, you can labe", + "doc_type":"usermanual", + "kw":"What Do I Do to Import Locally Labeled Data to ModelArts?,Data Management,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do to Import Locally Labeled Data to ModelArts?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0103.html", + "node_id":"en-us_topic_0000001943977417.xml", + "product_code":"modelarts", + "code":"290", + "des":"Failed to use the manifest file of the published dataset to import data again.Data has been changed in the OBS directory of the published dataset, for example, images hav", + "doc_type":"usermanual", + "kw":"Why Does Data Fail to Be Imported Using the Manifest File?,Data Management,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Why Does Data Fail to Be Imported Using the Manifest File?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0194.html", + "node_id":"en-us_topic_0000001910058658.xml", + "product_code":"modelarts", + "code":"291", + "des":"After being published, the labeling information and data in ModelArts datasets are stored as manifest files in the OBS path set for Output Dataset Path.To obtain the OBS ", + "doc_type":"usermanual", + "kw":"How Do I Download Labeling Results to a Local PC?,Data Management,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Download Labeling Results to a Local PC?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0195.html", + "node_id":"en-us_topic_0000001910058166.xml", + "product_code":"modelarts", + "code":"292", + "des":"The possible causes are as follows:All dataset data has been labeled. An email can be sent to team members only if there is unlabeled data in the dataset when the team la", + "doc_type":"usermanual", + "kw":"Why Cannot Team Members Receive Emails for a Team Labeling Task?,Data Management,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Why Cannot Team Members Receive Emails for a Team Labeling Task?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3205.html", + "node_id":"en-us_topic_0000001910058678.xml", + "product_code":"modelarts", + "code":"293", + "des":"Multiple accounts (annotators) are allowed to concurrently label one dataset. However, if multiple annotators concurrently label one image, only the labeling of the last ", + "doc_type":"usermanual", + "kw":"Can Two Accounts Concurrently Label One Dataset?,Data Management,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Can Two Accounts Concurrently Label One Dataset?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3191.html", + "node_id":"en-us_topic_0000001943977717.xml", + "product_code":"modelarts", + "code":"294", + "des":"No annotator cannot be deleted from a labeling team with labeling tasks assigned.The labeling result of an annotator can be synchronized to the overall labeling result on", + "doc_type":"usermanual", + "kw":"Can I Delete an Annotator from a Labeling Team with a Labeling Task Assigned? What Is the Impact on ", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Can I Delete an Annotator from a Labeling Team with a Labeling Task Assigned? What Is the Impact on the Labeling Result After Deletion? If the Annotator Cannot Be Deleted, Can I Separate the Annotator's Labeling Result?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3193.html", + "node_id":"en-us_topic_0000001910058710.xml", + "product_code":"modelarts", + "code":"295", + "des":"Hard examples are samples that are difficult to identify. Only image classification and object detection support hard examples.", + "doc_type":"usermanual", + "kw":"How Do I Define a Hard Example in Data Labeling? Which Samples Are Identified as Hard Examples?,Data", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Define a Hard Example in Data Labeling? Which Samples Are Identified as Hard Examples?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0251.html", + "node_id":"en-us_topic_0000001910058550.xml", + "product_code":"modelarts", + "code":"296", + "des":"Yes.For an object detection dataset, you can add multiple labeling boxes and labels to an image during labeling. Note that the labeling boxes cannot extend beyond the ima", + "doc_type":"usermanual", + "kw":"Can I Add Multiple Labeling Boxes to an Object Detection Dataset Image?,Data Management,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Can I Add Multiple Labeling Boxes to an Object Detection Dataset Image?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0254.html", + "node_id":"en-us_topic_0000001910018466.xml", + "product_code":"modelarts", + "code":"297", + "des":"Datasets cannot be merged.However, you can perform the following operations to merge the data of two datasets into one dataset.For example, to merge datasets A and B, do ", + "doc_type":"usermanual", + "kw":"How Do I Merge Two Datasets?,Data Management,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Merge Two Datasets?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0367.html", + "node_id":"en-us_topic_0000001943977877.xml", + "product_code":"modelarts", + "code":"298", + "des":"There are rotation angles of certain images, and the rules of processing such images vary depending on browsers. The following figures show compatibility with browsers.L ", + "doc_type":"usermanual", + "kw":"Why Are Images Displayed in Different Angles Under the Same Account?,Data Management,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Why Are Images Displayed in Different Angles Under the Same Account?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0368.html", + "node_id":"en-us_topic_0000001910058178.xml", + "product_code":"modelarts", + "code":"299", + "des":"After auto labeling is complete, confirm the labeled data. If you add new data before confirming the labeled data, all unlabeled data will be automatically labeled again.", + "doc_type":"usermanual", + "kw":"Do I Need to Train Data Again If New Data Is Added After Auto Labeling Is Complete?,Data Management,", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Do I Need to Train Data Again If New Data Is Added After Auto Labeling Is Complete?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0373.html", + "node_id":"en-us_topic_0000001910018290.xml", + "product_code":"modelarts", + "code":"300", + "des":"Take the Google Chrome browser as an example. When an image is labeled for the first time, the system displays a message in the upper right corner, indicating that the la", + "doc_type":"usermanual", + "kw":"Why Does the System Display a Message Indicating My Label Fails to Save on ModelArts?,Data Managemen", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Why Does the System Display a Message Indicating My Label Fails to Save on ModelArts?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0375.html", + "node_id":"en-us_topic_0000001910018618.xml", + "product_code":"modelarts", + "code":"301", + "des":"After a model is trained with multiple labels and deployed as a real-time service, all the labels are identified. If only one type of label needs to be identified, train ", + "doc_type":"usermanual", + "kw":"Can One Label By Identified Among Multiple Labels?,Data Management,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Can One Label By Identified Among Multiple Labels?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0504.html", + "node_id":"en-us_topic_0000001910058374.xml", + "product_code":"modelarts", + "code":"302", + "des":"After data amplification is enabled, images newly added in image classification datasets cannot be automatically labeled, but those added in object detection datasets can", + "doc_type":"usermanual", + "kw":"Why Are Newly Added Images Not Automatically Labeled After Data Amplification Is Enabled?,Data Manag", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Why Are Newly Added Images Not Automatically Labeled After Data Amplification Is Enabled?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3194.html", + "node_id":"en-us_topic_0000001943977573.xml", + "product_code":"modelarts", + "code":"303", "des":"If the issue occurs, check the video format. Only MP4 videos can be displayed and played.", "doc_type":"usermanual", "kw":"Why Cannot Videos in a Video Dataset Be Displayed or Played?,Data Management,User Guide", @@ -4987,41 +5974,379 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], "title":"Why Cannot Videos in a Video Dataset Be Displayed or Played?", "githuburl":"" }, { - "uri":"modelarts_05_0067.html", - "node_id":"modelarts_05_0067.xml", + "uri":"modelarts_05_3196.html", + "node_id":"en-us_topic_0000001910018170.xml", "product_code":"modelarts", - "code":"246", - "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "code":"304", + "des":"This issue occurs if automatic encryption is enabled in the OBS bucket. To resolve this issue, create an OBS bucket and upload data to it, or disable bucket encryption an", "doc_type":"usermanual", - "kw":"Notebook", + "kw":"Why All the Labeled Samples Stored in an OBS Bucket Are Displayed as Unlabeled in ModelArts After th", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], - "title":"Notebook", + "title":"Why All the Labeled Samples Stored in an OBS Bucket Are Displayed as Unlabeled in ModelArts After the Data Source Is Synchronized?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3197.html", + "node_id":"en-us_topic_0000001910018142.xml", + "product_code":"modelarts", + "code":"305", + "des":"YOLOv3 algorithms subscribed to in AI Gallery can use Soft-NMS to reduce overlapped bounding boxes. No official information has been released to show that YOLOv5 algorit", + "doc_type":"usermanual", + "kw":"How Do I Use Soft-NMS to Reduce Bounding Box Overlapping?,Data Management,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Use Soft-NMS to Reduce Bounding Box Overlapping?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3198.html", + "node_id":"en-us_topic_0000001910018506.xml", + "product_code":"modelarts", + "code":"306", + "des":"The default labeling job is deleted. As a result, the labels are deleted.", + "doc_type":"usermanual", + "kw":"Why ModelArts Image Labels Are Lost?,Data Management,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Why ModelArts Image Labels Are Lost?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0506.html", + "node_id":"en-us_topic_0000001910018450.xml", + "product_code":"modelarts", + "code":"307", + "des":"You are not allowed to manually add images to a training or validation dataset, but can only set a training and validation ratio. Then, the system randomly allocates the ", + "doc_type":"usermanual", + "kw":"How Do I Add Images to a Validation or Training Dataset?,Data Management,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Add Images to a Validation or Training Dataset?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0508.html", + "node_id":"en-us_topic_0000001910058234.xml", + "product_code":"modelarts", + "code":"308", + "des":"The functions provided ModelArts data management vary depending on the type of the dataset.", + "doc_type":"usermanual", + "kw":"What ModelArts Data Management Can Be Used for?,Data Management,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What ModelArts Data Management Can Be Used for?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0509.html", + "node_id":"en-us_topic_0000001910058278.xml", + "product_code":"modelarts", + "code":"309", + "des":"Verify that your created bucket and ModelArts are in the same region.Check the region where the created OBS bucket is located.Log in to the .On the Object Storage Service", + "doc_type":"usermanual", + "kw":"Why Cannot I Find My Created OBS Bucket After I Select an OBS Path in ModelArts?,Data Management,Use", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Why Cannot I Find My Created OBS Bucket After I Select an OBS Path in ModelArts?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3140.html", + "node_id":"en-us_topic_0000001910018330.xml", + "product_code":"modelarts", + "code":"310", + "des":"The datasets of the new version are not displayed on the dataset page of the old version. To view the datasets of the new version, switch to the dataset page of the new v", + "doc_type":"usermanual", + "kw":"Why Cannot I Find My Newly Created Dataset?,Data Management,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Why Cannot I Find My Newly Created Dataset?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3141.html", + "node_id":"en-us_topic_0000001910018574.xml", + "product_code":"modelarts", + "code":"311", + "des":"The quota for the datasets of both the old and new versions is 100. On the dataset page of the new version, all created datasets are displayed. However, the dataset page ", + "doc_type":"usermanual", + "kw":"What Do I Do If the Database Quota Is Incorrect?,Data Management,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If the Database Quota Is Incorrect?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3144.html", + "node_id":"en-us_topic_0000001910058390.xml", + "product_code":"modelarts", + "code":"312", + "des":"When you publish a dataset, only the dataset of the image classification, object detection, text classification, or sound classification type supports data splitting.By d", + "doc_type":"usermanual", + "kw":"How Do I Split a Dataset?,Data Management,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Split a Dataset?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0512.html", + "node_id":"en-us_topic_0000001910018178.xml", + "product_code":"modelarts", + "code":"313", + "des":"Check the format of the data downloaded from AI Gallery. For example, compressed packages and Excel files will be ignored. The following table lists the supported formats", + "doc_type":"usermanual", + "kw":"Why Is There No Sample in the ModelArts Dataset Downloaded from AI Gallery and Then an OBS Bucket?,D", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Why Is There No Sample in the ModelArts Dataset Downloaded from AI Gallery and Then an OBS Bucket?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0020.html", + "node_id":"en-us_topic_0000001910018458.xml", + "product_code":"modelarts", + "code":"314", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Notebook (New Version)", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Notebook (New Version)", + "githuburl":"" + }, + { + "uri":"modelarts_05_0185.html", + "node_id":"en-us_topic_0000001910058194.xml", + "product_code":"modelarts", + "code":"315", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Constraints", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Constraints", + "githuburl":"" + }, + { + "uri":"modelarts_05_0111.html", + "node_id":"en-us_topic_0000001910058246.xml", + "product_code":"modelarts", + "code":"316", + "des":"For security purposes, notebook instances do not support sudo privilege escalation.", + "doc_type":"usermanual", + "kw":"Is sudo Privilege Escalation Supported?,Constraints,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Is sudo Privilege Escalation Supported?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0042.html", + "node_id":"en-us_topic_0000001943977589.xml", + "product_code":"modelarts", + "code":"317", + "des":"Notebook instances in DevEnviron support the Keras engine. The Keras engine is not supported in job training and model deployment (inference).Keras is an advanced neural ", + "doc_type":"usermanual", + "kw":"Is the Keras Engine Supported?,Constraints,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Is the Keras Engine Supported?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0084.html", + "node_id":"en-us_topic_0000001910018498.xml", + "product_code":"modelarts", + "code":"318", + "des":"The Python 2 environment of ModelArts supports Caffe, but the Python 3 environment does not support it.", + "doc_type":"usermanual", + "kw":"Does ModelArts Support the Caffe Engine?,Constraints,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Does ModelArts Support the Caffe Engine?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0058.html", + "node_id":"en-us_topic_0000001910018538.xml", + "product_code":"modelarts", + "code":"319", + "des":"No. MoXing can be used only on ModelArts.", + "doc_type":"usermanual", + "kw":"Can I Install MoXing in a Local Environment?,Constraints,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Can I Install MoXing in a Local Environment?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0238.html", + "node_id":"en-us_topic_0000001910058190.xml", + "product_code":"modelarts", + "code":"320", + "des":"The notebook instances of the new version can be remotely logged in. To do so, enable remote SSH when you create the notebook instances. Remotely log in to a notebook ins", + "doc_type":"usermanual", + "kw":"Can Notebook Instances Be Remotely Logged In?,Constraints,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Can Notebook Instances Be Remotely Logged In?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0186.html", + "node_id":"en-us_topic_0000001943977585.xml", + "product_code":"modelarts", + "code":"321", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Data Upload or Download", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Data Upload or Download", "githuburl":"" }, { "uri":"modelarts_05_0024.html", - "node_id":"modelarts_05_0024.xml", + "node_id":"en-us_topic_0000001910058302.xml", "product_code":"modelarts", - "code":"247", + "code":"322", "des":"In a notebook instance, you can call the ModelArts MoXing API or SDK to exchange data with OBS for uploading a file to OBS or downloading a file from OBS to the notebook ", "doc_type":"usermanual", "kw":"How Do I Upload a File from a Notebook Instance to OBS or Download a File from OBS to a Notebook Ins", @@ -5029,83 +6354,939 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], "title":"How Do I Upload a File from a Notebook Instance to OBS or Download a File from OBS to a Notebook Instance?", "githuburl":"" }, { - "uri":"modelarts_05_0071.html", - "node_id":"modelarts_05_0071.xml", + "uri":"modelarts_05_0057.html", + "node_id":"en-us_topic_0000001910058226.xml", "product_code":"modelarts", - "code":"248", - "des":"Log in to the ModelArts management console, and choose DevEnviron > Notebooks.In the notebook list, click Open in the Operation column of the target notebook instance to ", + "code":"323", + "des":"Large files (files larger than 100 MB)Use OBS to upload large files. To do so, use OBS Browser to upload a local file to an OBS bucket and use ModelArts SDK to download t", "doc_type":"usermanual", - "kw":"How Do I Enable the Terminal Function in DevEnviron of ModelArts?,Notebook,User Guide", + "kw":"How Do I Import Large Files to a Notebook Instance?,Data Upload or Download,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], - "title":"How Do I Enable the Terminal Function in DevEnviron of ModelArts?", + "title":"How Do I Import Large Files to a Notebook Instance?", "githuburl":"" }, { "uri":"modelarts_05_0045.html", - "node_id":"modelarts_05_0045.xml", + "node_id":"en-us_topic_0000001910018234.xml", "product_code":"modelarts", - "code":"249", + "code":"324", "des":"If you use OBS to store the notebook instance, after you click upload, the data is directly uploaded to the target OBS path, that is, the OBS path specified when the note", "doc_type":"usermanual", - "kw":"Where Will the Data Be Uploaded to?,Notebook,User Guide", + "kw":"Where Will the Data Be Uploaded to?,Data Upload or Download,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], "title":"Where Will the Data Be Uploaded to?", "githuburl":"" }, { - "uri":"modelarts_05_0080.html", - "node_id":"modelarts_05_0080.xml", + "uri":"modelarts_05_3172.html", + "node_id":"en-us_topic_0000001910058498.xml", "product_code":"modelarts", - "code":"250", - "des":"/cache is a temporary directory and will not be saved. After an instance using OBS storage is stopped, data in the ~work directory will be deleted. After a notebook insta", + "code":"325", + "des":"Data cannot be directly copied from notebook A to notebook B. To copy data, do as follows:Upload the data of notebook A to OBS.Download data from OBS to notebook B.For de", + "doc_type":"usermanual", + "kw":"How Do I Copy Data from Development Environment Notebook A to Notebook B?,Data Upload or Download,Us", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Copy Data from Development Environment Notebook A to Notebook B?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0187.html", + "node_id":"en-us_topic_0000001943977777.xml", + "product_code":"modelarts", + "code":"326", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Data Storage", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Data Storage", + "githuburl":"" + }, + { + "uri":"modelarts_05_0085.html", + "node_id":"en-us_topic_0000001910018702.xml", + "product_code":"modelarts", + "code":"327", + "des":"OBS files cannot be renamed on the OBS console. To rename an OBS file, call a MoXing API in an existing or newly created notebook instance.The following shows an example:", + "doc_type":"usermanual", + "kw":"How Do I Rename an OBS File?,Data Storage,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Rename an OBS File?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0080.html", + "node_id":"en-us_topic_0000001943977557.xml", + "product_code":"modelarts", + "code":"328", + "des":"Temporary files are stored in the /cache directory and will not be saved after the notebook instance is stopped or restarted. Data stored in the /home/ma-user/work direct", "doc_type":"usermanual", "kw":"Do Files in /cache Still Exist After a Notebook Instance is Stopped or Restarted? How Do I Avoid a R", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], "title":"Do Files in /cache Still Exist After a Notebook Instance is Stopped or Restarted? How Do I Avoid a Restart?", "githuburl":"" }, { - "uri":"modelarts_05_0030.html", - "node_id":"modelarts_05_0030.xml", + "uri":"modelarts_05_0188.html", + "node_id":"en-us_topic_0000001943977661.xml", "product_code":"modelarts", - "code":"251", + "code":"329", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Environment Configurations", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Environment Configurations", + "githuburl":"" + }, + { + "uri":"modelarts_05_01651.html", + "node_id":"en-us_topic_0000001910058602.xml", + "product_code":"modelarts", + "code":"330", + "des":"Run the following command to view the CUDA version of the target notebook instance:The following shows an example.In the preceding example, the CUDA version is 10.2.", + "doc_type":"usermanual", + "kw":"How Do I Check the CUDA Version Used by a Notebook Instance?,Environment Configurations,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Check the CUDA Version Used by a Notebook Instance?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0071.html", + "node_id":"en-us_topic_0000001943977701.xml", + "product_code":"modelarts", + "code":"331", + "des":"Log in to the ModelArts management console, and choose DevEnviron > Notebooks.Create a notebook instance. When the instance is running, click Open in the Operation column", + "doc_type":"usermanual", + "kw":"How Do I Enable the Terminal Function in DevEnviron of ModelArts?,Environment Configurations,User Gu", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Enable the Terminal Function in DevEnviron of ModelArts?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0022.html", + "node_id":"en-us_topic_0000001910018610.xml", + "product_code":"modelarts", + "code":"332", + "des":"Multiple environments such as Jupyter and Python have been integrated into ModelArts notebook to support many frameworks, including TensorFlow, MindSpore, PyTorch, and Sp", + "doc_type":"usermanual", + "kw":"How Do I Install External Libraries in a Notebook Instance?,Environment Configurations,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Install External Libraries in a Notebook Instance?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0189.html", + "node_id":"en-us_topic_0000001943977821.xml", + "product_code":"modelarts", + "code":"333", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Notebook Instances", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Notebook Instances", + "githuburl":"" + }, + { + "uri":"modelarts_05_0021.html", + "node_id":"en-us_topic_0000001910018318.xml", + "product_code":"modelarts", + "code":"334", + "des":"Troubleshoot the issue based on error code.If this error is reported when an IAM user creates an instance, the IAM user does not have the permissions to access the corres", + "doc_type":"usermanual", + "kw":"What Do I Do If I Cannot Access My Notebook Instance?,Notebook Instances,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If I Cannot Access My Notebook Instance?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0044.html", + "node_id":"en-us_topic_0000001943977785.xml", + "product_code":"modelarts", + "code":"335", + "des":"In the notebook instance, error message \"No Space left...\" is displayed after the pip install command is run.You are advised to run the pip install --no-cache ** command", + "doc_type":"usermanual", + "kw":"What Should I Do When the System Displays an Error Message Indicating that No Space Left After I Run", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Should I Do When the System Displays an Error Message Indicating that No Space Left After I Run the pip install Command?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0310.html", + "node_id":"en-us_topic_0000001943977641.xml", + "product_code":"modelarts", + "code":"336", + "des":"After I run pip install in a notebook instance, the system displays error message \"ReadTimeoutError...\" or \"Read timed out...\".Run pip install --upgrade pip and then pip ", + "doc_type":"usermanual", + "kw":"What Do I Do If \"Read timed out\" Is Displayed After I Run pip install?,Notebook Instances,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If \"Read timed out\" Is Displayed After I Run pip install?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0051.html", + "node_id":"en-us_topic_0000001910058682.xml", + "product_code":"modelarts", + "code":"337", + "des":"If the notebook instance can run the code but cannot save it, the error message \"save error\" is displayed when you save the file. In most cases, this error is caused by a", + "doc_type":"usermanual", + "kw":"What Do I Do If the Code Can Be Run But Cannot Be Saved, and the Error Message \"save error\" Is Displ", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If the Code Can Be Run But Cannot Be Saved, and the Error Message \"save error\" Is Displayed?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0067.html", + "node_id":"en-us_topic_0000001910018222.xml", + "product_code":"modelarts", + "code":"338", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Code Execution", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Code Execution", + "githuburl":"" + }, + { + "uri":"modelarts_05_0059.html", + "node_id":"en-us_topic_0000001910058690.xml", + "product_code":"modelarts", + "code":"339", + "des":"If a notebook instance fails to execute code, you can locate and rectify the fault as follows:If the execution of a cell is suspended or lasts for a long time (for exampl", + "doc_type":"usermanual", + "kw":"What Do I Do If a Notebook Instance Won't Run My Code?,Code Execution,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If a Notebook Instance Won't Run My Code?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0050.html", + "node_id":"en-us_topic_0000001943977441.xml", + "product_code":"modelarts", + "code":"340", + "des":"The notebook instance breaks down during training code running due to insufficient memory caused by large data volume or excessive training layers.After this error occurs", + "doc_type":"usermanual", + "kw":"Why Does the Instance Break Down When dead kernel Is Displayed During Training Code Running?,Code Ex", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Why Does the Instance Break Down When dead kernel Is Displayed During Training Code Running?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0167.html", + "node_id":"en-us_topic_0000001910058454.xml", + "product_code":"modelarts", + "code":"341", + "des":"The following error occurs when the training code is executed in a notebook:Parameters arch and code in setup.py have not been set to match the GPU compute power.For Tesl", + "doc_type":"usermanual", + "kw":"What Do I Do If cudaCheckError Occurs During Training?,Code Execution,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If cudaCheckError Occurs During Training?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0113.html", + "node_id":"en-us_topic_0000001943977317.xml", + "product_code":"modelarts", + "code":"342", + "des":"If space is insufficient, use notebook instances of the EVS type.Upload code and data to an OBS bucket for the original notebook instance by referring to How Do I Upload ", + "doc_type":"usermanual", + "kw":"What Should I Do If DevEnviron Prompts Insufficient Space?,Code Execution,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Should I Do If DevEnviron Prompts Insufficient Space?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0168.html", + "node_id":"en-us_topic_0000001943977353.xml", + "product_code":"modelarts", + "code":"343", + "des":"When opencv.imshow is used in a notebook instance, the notebook instance breaks down.The cv2.imshow function in OpenCV malfunctions in a client/server environment such as", + "doc_type":"usermanual", + "kw":"Why Does the Notebook Instance Break Down When opencv.imshow Is Used?,Code Execution,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Why Does the Notebook Instance Break Down When opencv.imshow Is Used?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0169.html", + "node_id":"en-us_topic_0000001910018494.xml", + "product_code":"modelarts", + "code":"344", + "des":"When a text file generated in Windows is used in a notebook instance, the text content cannot be read and an error message may be displayed indicating that the path canno", + "doc_type":"usermanual", + "kw":"Why Cannot the Path of a Text File Generated in Windows OS Be Found In a Notebook Instance?,Code Exe", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Why Cannot the Path of a Text File Generated in Windows OS Be Found In a Notebook Instance?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3145.html", + "node_id":"en-us_topic_0000001910018662.xml", + "product_code":"modelarts", + "code":"345", + "des":"When a file is saved in JupyterLab, an error message is displayed.A third-party plug-in has been installed on the browser, and the proxy intercepts the request. As a resu", + "doc_type":"usermanual", + "kw":"What Do I Do If Files Fail to Be Saved in JupyterLab?,Code Execution,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If Files Fail to Be Saved in JupyterLab?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0513.html", + "node_id":"en-us_topic_0000001943977669.xml", + "product_code":"modelarts", + "code":"346", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Failures to Access the Development Environment Through VS Code", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Failures to Access the Development Environment Through VS Code", + "githuburl":"" + }, + { + "uri":"modelarts_05_3114.html", + "node_id":"en-us_topic_0000001910058634.xml", + "product_code":"modelarts", + "code":"347", + "des":"VS Code is not installed or the installed version is outdated.Download and install VS Code. (Windows users click Windows. Users of other operating systems click another O", + "doc_type":"usermanual", + "kw":"What Do I Do If the VS Code Window Is Not Displayed?,Failures to Access the Development Environment ", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If the VS Code Window Is Not Displayed?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3116.html", + "node_id":"en-us_topic_0000001943977545.xml", + "product_code":"modelarts", + "code":"348", + "des":"Establishing a remote SSH connection to an instance through VS Code failed.Close the displayed dialog box, view the error information in OUTPUT, and rectify the fault by ", + "doc_type":"usermanual", + "kw":"What Do I Do If Error Message \"Could not establish connection to xxx\" Is Displayed During a Remote C", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If Error Message \"Could not establish connection to xxx\" Is Displayed During a Remote Connection?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3117.html", + "node_id":"en-us_topic_0000001910058650.xml", + "product_code":"modelarts", + "code":"349", + "des":"The local network is faulty. As a result, it takes a long time to automatically install the VS Code server remotely.Manually install the VS Code server.Replace ${commitID", + "doc_type":"usermanual", + "kw":"What Do I Do If the Connection to a Remote Development Environment Remains in \"Setting up SSH Host x", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If the Connection to a Remote Development Environment Remains in \"Setting up SSH Host xxx: Downloading VS Code Server locally\" State for More Than 10 Minutes?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3118.html", + "node_id":"en-us_topic_0000001943977357.xml", + "product_code":"modelarts", + "code":"350", + "des":"Downloading the VS Code server failed before, leading to residual data. As a result, new download cannot be performed.Method 1 (performed locally): Open the command panel", + "doc_type":"usermanual", + "kw":"What Do I Do If a Remote Connection Is in the Retry State?,Failures to Access the Development Enviro", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If a Remote Connection Is in the Retry State?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3119.html", + "node_id":"en-us_topic_0000001910018674.xml", + "product_code":"modelarts", + "code":"351", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"What Do I Do If Error Message \"The VS Code Server failed to start\" Is Displayed?,Failures to Access ", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If Error Message \"The VS Code Server failed to start\" Is Displayed?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3123.html", + "node_id":"en-us_topic_0000001910018650.xml", + "product_code":"modelarts", + "code":"352", + "des":"OrWhen VS Code attempts to access a notebook instance, the system always prompts you to select a certificate, and the message, excepting the title, consists of garbled ch", + "doc_type":"usermanual", + "kw":"What Do I Do If Error Message \"An SSH installation couldn't be found\" or \"Could not establish connec", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If Error Message \"An SSH installation couldn't be found\" or \"Could not establish connection to instance xxx: 'ssh' ...\" Is Displayed?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3128.html", + "node_id":"en-us_topic_0000001910018654.xml", + "product_code":"modelarts", + "code":"353", + "des":"OrAfter the notebook instance is restarted, its public key changes. The alarm is generated when OpenSSH detected the key change.Add -o StrictHostKeyChecking=no for remote", + "doc_type":"usermanual", + "kw":"What Do I Do If Error Message \"Host key verification failed\" or \"Port forwarding is disabled\" Is Dis", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If Error Message \"Host key verification failed\" or \"Port forwarding is disabled\" Is Displayed?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0304.html", + "node_id":"en-us_topic_0000001910058330.xml", + "product_code":"modelarts", + "code":"354", + "des":"OrThe disk space of /home/ma-user/work is insufficient.Delete unnecessary files in /home/ma-user/work.", + "doc_type":"usermanual", + "kw":"What Do I Do If Error Message \"Failed to install the VS Code Server\" or \"tar: Error is not recoverab", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If Error Message \"Failed to install the VS Code Server\" or \"tar: Error is not recoverable: exiting now\" Is Displayed?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3168.html", + "node_id":"en-us_topic_0000001910058538.xml", + "product_code":"modelarts", + "code":"355", + "des":"After an SSH connection is set up through VS Code, no operation is performed for a long time and the window retains open. When the connection is used again, it is found t", + "doc_type":"usermanual", + "kw":"What Do I Do for an Automatically Disconnected VS Code Connection If No Operation Is Performed for a", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do for an Automatically Disconnected VS Code Connection If No Operation Is Performed for a Long Time?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3169.html", + "node_id":"en-us_topic_0000001943977437.xml", + "product_code":"modelarts", + "code":"356", + "des":"VS Code is automatically upgraded. As a result, download the new VS Code server to set up a new connection.Disable automatic VS Code upgrade. To do so, click Settings in ", + "doc_type":"usermanual", + "kw":"What Do I Do If It Takes a Long Time to Set Up a Remote Connection After VS Code Is Automatically Up", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If It Takes a Long Time to Set Up a Remote Connection After VS Code Is Automatically Upgraded?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3220.html", + "node_id":"en-us_topic_0000001943977453.xml", + "product_code":"modelarts", + "code":"357", + "des":"After MobaXterm is connected to a development environment, it is disconnected after a period of time.When MobaXterm is configured, SSH keepalive is not selected or Stop s", + "doc_type":"usermanual", + "kw":"What Can I Do If a Notebook Instance Is Frequently Disconnected or Stuck After I Use MobaXterm to Co", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Can I Do If a Notebook Instance Is Frequently Disconnected or Stuck After I Use MobaXterm to Connect to the Notebook Instance in SSH Mode?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0190.html", + "node_id":"en-us_topic_0000001910058238.xml", + "product_code":"modelarts", + "code":"358", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Others", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Others", + "githuburl":"" + }, + { + "uri":"modelarts_05_3173.html", + "node_id":"en-us_topic_0000001910018386.xml", + "product_code":"modelarts", + "code":"359", + "des":"An Ascend multi-card training job runs in multi-process, multi-card mode. The number of cards is equal to the number of Python processes. The Ascend underlayer reads the ", + "doc_type":"usermanual", + "kw":"How Do I Use Multiple Ascend Cards for Debugging in a Notebook Instance?,Others,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Use Multiple Ascend Cards for Debugging in a Notebook Instance?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3147.html", + "node_id":"en-us_topic_0000001910058566.xml", + "product_code":"modelarts", + "code":"360", + "des":"If your training job is single-process in code, the training speed is basically the same no matter when the notebook flavor of 8 vCPUs and 64 GB of memory or the flavor o", + "doc_type":"usermanual", + "kw":"Why Is the Training Speed Similar When Different Notebook Flavors Are Used?,Others,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Why Is the Training Speed Similar When Different Notebook Flavors Are Used?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0076.html", + "node_id":"en-us_topic_0000001910018542.xml", + "product_code":"modelarts", + "code":"361", + "des":"If you are not satisfied with training results when using MoXing to build a model, you can perform incremental training after modifying some data and label information.Af", + "doc_type":"usermanual", + "kw":"How Do I Perform Incremental Training When Using MoXing?,Others,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Perform Incremental Training When Using MoXing?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0082.html", + "node_id":"en-us_topic_0000001910059890.xml", + "product_code":"modelarts", + "code":"362", + "des":"If you select GPU when creating a notebook instance, perform the following operations to view GPU usage:Log in to the ModelArts management console, and choose DevEnviron ", + "doc_type":"usermanual", + "kw":"How Do I View GPU Usage on the Notebook?,Others,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I View GPU Usage on the Notebook?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0374.html", + "node_id":"en-us_topic_0000001943977673.xml", + "product_code":"modelarts", + "code":"363", + "des":"Run the shell or python command to obtain the GPU usage.Run the nvidia-smi command.This operation relies on CUDA NVCC.watch -n 1 nvidia-smiThis operation relies on CUDA N", + "doc_type":"usermanual", + "kw":"How Can I Obtain GPU Usage Through Code?,Others,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Can I Obtain GPU Usage Through Code?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0164.html", + "node_id":"en-us_topic_0000001910018202.xml", + "product_code":"modelarts", + "code":"364", + "des":"The real-time performance indicator that can be viewed is npu-smi, which is similar to nvidia-smi of a GPU chip.", + "doc_type":"usermanual", + "kw":"Which Real-Time Performance Indicators of an Ascend Chip Can I View?,Others,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Which Real-Time Performance Indicators of an Ascend Chip Can I View?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0245.html", + "node_id":"en-us_topic_0000001910018582.xml", + "product_code":"modelarts", + "code":"365", + "des":"Files stored in JupyterLab are the same as those in the work directory on the Terminal page. That is, the files are created on your notebook instances or synchronized fro", + "doc_type":"usermanual", + "kw":"What Are the Relationships Between Files Stored in JupyterLab, Terminal, and OBS?,Others,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Are the Relationships Between Files Stored in JupyterLab, Terminal, and OBS?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0377.html", + "node_id":"en-us_topic_0000001910018402.xml", + "product_code":"modelarts", + "code":"366", + "des":"Datasets created on ModelArts are stored in OBS. To use these datasets in a notebook instance, download them from OBS to the notebook instance.For details, see How Do I U", + "doc_type":"usermanual", + "kw":"How Do I Use the Datasets Created on ModelArts in a Notebook Instance?,Others,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Use the Datasets Created on ModelArts in a Notebook Instance?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3113.html", + "node_id":"en-us_topic_0000001910018346.xml", + "product_code":"modelarts", + "code":"367", + "des":"pip is a common Python package management tool. It allows you to search for, download, install, and uninstall Python packages.", + "doc_type":"usermanual", + "kw":"pip and Common Commands,Others,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"pip and Common Commands", + "githuburl":"" + }, + { + "uri":"modelarts_05_3151.html", + "node_id":"en-us_topic_0000001910018418.xml", + "product_code":"modelarts", + "code":"368", + "des":"When creating a notebook instance, you can select CPUs, GPUs, or Ascend based on the data volume.ModelArts mounts disks to /cache. You can use this directory to store tem", + "doc_type":"usermanual", + "kw":"What Are Sizes of the /cache Directories for Different Notebook Specifications in DevEnviron?,Others", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Are Sizes of the /cache Directories for Different Notebook Specifications in DevEnviron?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0030.html", + "node_id":"en-us_topic_0000001910018486.xml", + "product_code":"modelarts", + "code":"369", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Training Jobs", @@ -5113,20 +7294,479 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], "title":"Training Jobs", "githuburl":"" }, { - "uri":"modelarts_05_0031.html", - "node_id":"modelarts_05_0031.xml", + "uri":"modelarts_05_0225.html", + "node_id":"en-us_topic_0000001943977577.xml", "product_code":"modelarts", - "code":"252", + "code":"370", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Functional Consulting", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Functional Consulting", + "githuburl":"" + }, + { + "uri":"modelarts_05_0170.html", + "node_id":"en-us_topic_0000001910058290.xml", + "product_code":"modelarts", + "code":"371", + "des":"Increasing model complexityFor an algorithm, add more high-order items to the regression model, improve the depth of the decision tree, or increase the number of hidden l", + "doc_type":"usermanual", + "kw":"What Are the Solutions to Underfitting?,Functional Consulting,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Are the Solutions to Underfitting?", + "githuburl":"" + }, + { + "uri":"modelarts_06_0003.html", + "node_id":"en-us_topic_0000001943979045.xml", + "product_code":"modelarts", + "code":"372", + "des":"The differences between the new version and the old version lie in:Differences in Training Job CreationDifferences in Training Code AdaptationDifferences in Built-in Trai", + "doc_type":"usermanual", + "kw":"What Are the Precautions for Switching Training Jobs from the Old Version to the New Version?,Functi", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Are the Precautions for Switching Training Jobs from the Old Version to the New Version?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0360.html", + "node_id":"en-us_topic_0000001910058702.xml", + "product_code":"modelarts", + "code":"373", + "des":"Models generated using ModelArts ExeML can be deployed only on ModelArts and cannot be downloaded to your local PC.Models trained using a custom or subscription algorithm", + "doc_type":"usermanual", + "kw":"How Do I Obtain a Trained ModelArts Model?,Functional Consulting,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Obtain a Trained ModelArts Model?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0379.html", + "node_id":"en-us_topic_0000001910018666.xml", + "product_code":"modelarts", + "code":"374", + "des":"Visualization jobs are powered by TensorBoard. For details about TensorBoard functions, see the TensorBoard official website.", + "doc_type":"usermanual", + "kw":"What Is TensorBoard Used for in Model Visualization Jobs?,Functional Consulting,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Is TensorBoard Used for in Model Visualization Jobs?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0380.html", + "node_id":"en-us_topic_0000001910018478.xml", + "product_code":"modelarts", + "code":"375", + "des":"ModelArts automatically provides the RANK_TABLE_FILE file for you. Obtain the file location through environment variables.Open the notebook terminal and run the following", + "doc_type":"usermanual", + "kw":"How Do I Obtain RANK_TABLE_FILE on ModelArts for Distributed Training?,Functional Consulting,User Gu", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Obtain RANK_TABLE_FILE on ModelArts for Distributed Training?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0381.html", + "node_id":"en-us_topic_0000001910058202.xml", + "product_code":"modelarts", + "code":"376", + "des":"Obtain a CUDA version:Obtain a cuDNN version:", + "doc_type":"usermanual", + "kw":"How Do I Obtain the CUDA and cuDNN Versions of a Custom Image?,Functional Consulting,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Obtain the CUDA and cuDNN Versions of a Custom Image?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3214.html", + "node_id":"en-us_topic_0000001943977429.xml", + "product_code":"modelarts", + "code":"377", + "des":"MoXing installation files cannot be downloaded or installed by users. The MoXing installation package is preset in ModelArts notebook and training job images, and can be ", + "doc_type":"usermanual", + "kw":"How Do I Obtain a MoXing Installation File?,Functional Consulting,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Obtain a MoXing Installation File?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0382.html", + "node_id":"en-us_topic_0000001910058338.xml", + "product_code":"modelarts", + "code":"378", + "des":"In a TensorFlow-powered distributed training, the PS task and worker task are started. The worker task is a key task. ModelArts will use a process exit code of the worker", + "doc_type":"usermanual", + "kw":"In a Multi-Node Training, the TensorFlow PS Node Functioning as a Server Will Be Continuously Suspen", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"In a Multi-Node Training, the TensorFlow PS Node Functioning as a Server Will Be Continuously Suspended. How Does ModelArts Determine Whether the Training Is Complete? Which Node Is a Worker?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0235.html", + "node_id":"en-us_topic_0000001943977637.xml", + "product_code":"modelarts", + "code":"379", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Reading Data During Training", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Reading Data During Training", + "githuburl":"" + }, + { + "uri":"modelarts_05_0114.html", + "node_id":"en-us_topic_0000001910018190.xml", + "product_code":"modelarts", + "code":"380", + "des":"When ModelArts is used for custom deep learning training, training data is usually stored in OBS. If the volume of training data is large (for example, greater than 200 G", + "doc_type":"usermanual", + "kw":"How Do I Improve Training Efficiency While Reducing Interaction with OBS?,Reading Data During Traini", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Improve Training Efficiency While Reducing Interaction with OBS?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0236.html", + "node_id":"en-us_topic_0000001910018146.xml", + "product_code":"modelarts", + "code":"381", + "des":"If a dataset contains a large number of data files (massive small files) and data is stored in OBS, files need to be repeatedly read from OBS during training. As a result", + "doc_type":"usermanual", + "kw":"Why the Data Read Efficiency Is Low When a Large Number of Data Files Are Read During Training?,Read", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Why the Data Read Efficiency Is Low When a Large Number of Data Files Are Read During Training?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0224.html", + "node_id":"en-us_topic_0000001910018182.xml", + "product_code":"modelarts", + "code":"382", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Compiling the Training Code", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Compiling the Training Code", + "githuburl":"" + }, + { + "uri":"modelarts_05_0086.html", + "node_id":"en-us_topic_0000001943977533.xml", + "product_code":"modelarts", + "code":"383", + "des":"The path to the training environment and the code directory in the container are generally obtained using the environment variable ${MA_JOB_DIR}, which is /home/ma-user/m", + "doc_type":"usermanual", + "kw":"What Is the Common File Path for Training Jobs?,Compiling the Training Code,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Is the Common File Path for Training Jobs?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0088.html", + "node_id":"en-us_topic_0000001910018370.xml", + "product_code":"modelarts", + "code":"384", + "des":"A third-party library may be used during job training. The following uses C++ as an example to describe how to install a third-party library.Download source code to a loc", + "doc_type":"usermanual", + "kw":"How Do I Install a Library That C++ Depends on?,Compiling the Training Code,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Install a Library That C++ Depends on?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0092.html", + "node_id":"en-us_topic_0000001943977525.xml", + "product_code":"modelarts", + "code":"385", + "des":"In the script for training job boot file, run the following commands to obtain the sizes of the copied folders and the folders to be copied. Then determine whether folder", + "doc_type":"usermanual", + "kw":"How Do I Check Whether a Folder Copy Is Complete During Job Training?,Compiling the Training Code,Us", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Check Whether a Folder Copy Is Complete During Job Training?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0091.html", + "node_id":"en-us_topic_0000001943977625.xml", + "product_code":"modelarts", + "code":"386", + "des":"During job training, some parameters need to be loaded from a pre-trained model to initialize the current model. You can use the following methods to load the parameters:", + "doc_type":"usermanual", + "kw":"How Do I Load Some Well Trained Parameters During Job Training?,Compiling the Training Code,User Gui", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Load Some Well Trained Parameters During Job Training?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0093.html", + "node_id":"en-us_topic_0000001943977449.xml", + "product_code":"modelarts", + "code":"387", + "des":"Training job parameters can be automatically generated in the background or you can enter them manually. To obtain training job parameters:When a training job is created,", + "doc_type":"usermanual", + "kw":"How Do I Obtain Training Job Parameters from the Boot File of the Training Job?,Compiling the Traini", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Obtain Training Job Parameters from the Boot File of the Training Job?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0097.html", + "node_id":"en-us_topic_0000001910018338.xml", + "product_code":"modelarts", + "code":"388", + "des":"If you cannot access the corresponding folder by using os.system('cd xxx') in the boot script of the training job, you are advised to use the following method:", + "doc_type":"usermanual", + "kw":"Why Can't I Use os.system ('cd xxx') to Access the Corresponding Folder During Job Training?,Compili", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Why Can't I Use os.system ('cd xxx') to Access the Corresponding Folder During Job Training?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0078.html", + "node_id":"en-us_topic_0000001943977457.xml", + "product_code":"modelarts", + "code":"389", + "des":"ModelArts enables you to invoke a shell script, and you can use Python to invoke .sh. The procedure is as follows:Upload the .sh script to an OBS bucket. For example, upl", + "doc_type":"usermanual", + "kw":"How Do I Invoke a Shell Script in a Training Job to Execute the .sh File?,Compiling the Training Cod", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Invoke a Shell Script in a Training Job to Execute the .sh File?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0280.html", + "node_id":"en-us_topic_0000001910058666.xml", + "product_code":"modelarts", + "code":"390", + "des":"Since locally developed code must be uploaded to the ModelArts backend, you may set an invalid dependency file path. A recommended general solution to this problem is tha", + "doc_type":"usermanual", + "kw":"How Do I Obtain the Dependency File Path to be Used in Training Code?,Compiling the Training Code,Us", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Obtain the Dependency File Path to be Used in Training Code?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3217.html", + "node_id":"en-us_topic_0000001910058186.xml", + "product_code":"modelarts", + "code":"391", + "des":"To obtain the actual path to a file in a container, use Python.You can also use other methods of obtaining a file path through the search engine and use the obtained path", + "doc_type":"usermanual", + "kw":"What Is the File Path If a File in the model Directory Is Referenced in a Custom Python Package?,Com", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Is the File Path If a File in the model Directory Is Referenced in a Custom Python Package?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0223.html", + "node_id":"en-us_topic_0000001943977737.xml", + "product_code":"modelarts", + "code":"392", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Creating a Training Job", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Creating a Training Job", + "githuburl":"" + }, + { + "uri":"modelarts_05_0031.html", + "node_id":"en-us_topic_0000001910018270.xml", + "product_code":"modelarts", + "code":"393", "des":"The code directory for creating a training job has limits on the size and number of files.Delete the files except the code from the code directory or save the files in ot", "doc_type":"usermanual", "kw":"What Can I Do If the Message \"Object directory size/quantity exceeds the limit\" Is Displayed When I ", @@ -5134,10 +7774,9 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], "title":"What Can I Do If the Message \"Object directory size/quantity exceeds the limit\" Is Displayed When I Create a Training Job?", @@ -5145,114 +7784,209 @@ }, { "uri":"modelarts_05_0090.html", - "node_id":"modelarts_05_0090.xml", + "node_id":"en-us_topic_0000001943977469.xml", "product_code":"modelarts", - "code":"253", - "des":"When creating a training job, you can select CPU, GPU, or Ascend resources based on the size of the training job.ModelArts mounts the disk to the /cache directory. You ca", + "code":"394", + "des":"When creating a training job, you can select CPU, GPU, or Ascend resources based on the size of the training job.ModelArts mounts a disk to /cache. You can use this direc", "doc_type":"usermanual", "kw":"What Are Sizes of the /cache Directories for Different Resource Specifications in the Training Envir", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], "title":"What Are Sizes of the /cache Directories for Different Resource Specifications in the Training Environment?", "githuburl":"" }, { - "uri":"modelarts_05_0063.html", - "node_id":"modelarts_05_0063.xml", + "uri":"modelarts_05_0098.html", + "node_id":"en-us_topic_0000001910058402.xml", "product_code":"modelarts", - "code":"254", - "des":"When a model references a dependency package, select a frequently-used framework to create training jobs. In addition, place the required file or installation package in ", + "code":"395", + "des":"The program of a ModelArts training job runs in a container. The address of a directory to which the container is mounted is unique, and can be accessed only by the runni", "doc_type":"usermanual", - "kw":"How Do I Create a Training Job When a Dependency Package Is Referenced in a Model?,Training Jobs,Use", + "kw":"Is the /cache Directory of a Training Job Secure?,Creating a Training Job,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], - "title":"How Do I Create a Training Job When a Dependency Package Is Referenced in a Model?", + "title":"Is the /cache Directory of a Training Job Secure?", "githuburl":"" }, { - "uri":"modelarts_05_0088.html", - "node_id":"modelarts_05_0088.xml", + "uri":"modelarts_05_0222.html", + "node_id":"en-us_topic_0000001910018422.xml", "product_code":"modelarts", - "code":"255", - "des":"A third-party library may be used during job training. The following uses C++ as an example to describe how to install a third-party library.Download source code to a loc", + "code":"396", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", - "kw":"How Do I Install a Library That C++ Depends on?,Training Jobs,User Guide", + "kw":"Managing Training Job Versions", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], - "title":"How Do I Install a Library That C++ Depends on?", + "title":"Managing Training Job Versions", "githuburl":"" }, { - "uri":"modelarts_05_0091.html", - "node_id":"modelarts_05_0091.xml", + "uri":"modelarts_05_0133.html", + "node_id":"en-us_topic_0000001910058686.xml", "product_code":"modelarts", - "code":"256", - "des":"During job training, some parameters need to be loaded from a pre-trained model to initialize the current model. You can use the following methods to load the parameters:", + "code":"397", + "des":"ModelArts training jobs do not support scheduled or periodic calling. When your job is in the Running state, you can call the job based on service requirements.", "doc_type":"usermanual", - "kw":"How Do I Load Some Well Trained Parameters During Job Training?,Training Jobs,User Guide", + "kw":"Does a Training Job Support Scheduled or Periodic Calling?,Managing Training Job Versions,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], - "title":"How Do I Load Some Well Trained Parameters During Job Training?", + "title":"Does a Training Job Support Scheduled or Periodic Calling?", "githuburl":"" }, { - "uri":"modelarts_05_0363.html", - "node_id":"modelarts_05_0363.xml", + "uri":"modelarts_05_0226.html", + "node_id":"en-us_topic_0000001910018218.xml", "product_code":"modelarts", - "code":"257", - "des":"If the training job is always queuing, the selected resources are limited in the resource pool, and the job needs to be queued. In this case, wait for resources. To speed", + "code":"398", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", - "kw":"Why Is a Training Job Always Queuing?,Training Jobs,User Guide", + "kw":"Viewing Job Details", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], - "title":"Why Is a Training Job Always Queuing?", + "title":"Viewing Job Details", + "githuburl":"" + }, + { + "uri":"modelarts_05_0089.html", + "node_id":"en-us_topic_0000001910018526.xml", + "product_code":"modelarts", + "code":"399", + "des":"In the left navigation pane of the ModelArts management console, choose Training Management > Training Jobs to go to the Training Jobs page. In the training job list, cli", + "doc_type":"usermanual", + "kw":"How Do I Check Resource Usage of a Training Job?,Viewing Job Details,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Check Resource Usage of a Training Job?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0094.html", + "node_id":"en-us_topic_0000001910018362.xml", + "product_code":"modelarts", + "code":"400", + "des":"ModelArts does not support access to the background of a training job.", + "doc_type":"usermanual", + "kw":"How Do I Access the Background of a Training Job?,Viewing Job Details,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Access the Background of a Training Job?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0095.html", + "node_id":"en-us_topic_0000001910058262.xml", + "product_code":"modelarts", + "code":"401", + "des":"Storage directories of ModelArts training jobs do not affect each other. Environments are isolated from each other, and data of other jobs cannot be viewed.", + "doc_type":"usermanual", + "kw":"Is There Any Conflict When Models of Two Training Jobs Are Saved in the Same Directory of a Containe", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Is There Any Conflict When Models of Two Training Jobs Are Saved in the Same Directory of a Container?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0096.html", + "node_id":"en-us_topic_0000001910058414.xml", + "product_code":"modelarts", + "code":"402", + "des":"In a training job, only three valid digits are retained in a training output log. When the value of loss is too small, the value is displayed as 0.000. Log content is as ", + "doc_type":"usermanual", + "kw":"Only Three Valid Digits Are Retained in a Training Output Log. Can the Value of loss Be Changed?,Vie", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Only Three Valid Digits Are Retained in a Training Output Log. Can the Value of loss Be Changed?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0121.html", + "node_id":"en-us_topic_0000001910018710.xml", + "product_code":"modelarts", + "code":"403", + "des":"You can download the model trained by a training job and upload the downloaded model to OBS in the region corresponding to the target account.Log in to the ModelArts cons", + "doc_type":"usermanual", + "kw":"Can a Trained Model Be Downloaded or Migrated to Another Account? How Do I Obtain the Download Path?", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Can a Trained Model Be Downloaded or Migrated to Another Account? How Do I Obtain the Download Path?", "githuburl":"" }, { "uri":"modelarts_05_0016.html", - "node_id":"modelarts_05_0016.xml", + "node_id":"en-us_topic_0000001943977617.xml", "product_code":"modelarts", - "code":"258", + "code":"404", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Model Management", @@ -5260,62 +7994,79 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], "title":"Model Management", "githuburl":"" }, { - "uri":"modelarts_21_0086.html", - "node_id":"modelarts_21_0086.xml", + "uri":"modelarts_05_0215.html", + "node_id":"en-us_topic_0000001910018534.xml", "product_code":"modelarts", - "code":"259", - "des":"ModelArts does not support the import of models in .h5 format. You can convert the models in .h5 format of Keras to the TensorFlow format and then import the models to Mo", + "code":"405", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", - "kw":"How Do I Import the .h5 Model of Keras to ModelArts?,Model Management,User Guide", + "kw":"Importing Models", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], - "title":"How Do I Import the .h5 Model of Keras to ModelArts?", + "title":"Importing Models", "githuburl":"" }, { - "uri":"modelarts_05_0124.html", - "node_id":"modelarts_05_0124.xml", + "uri":"modelarts_06_0004.html", + "node_id":"en-us_topic_0000001910058446.xml", "product_code":"modelarts", - "code":"260", - "des":"ModelArts allows you to upload local models to OBS or import models stored in OBS directly into ModelArts.For details about how to import a model from OBS, see \"Importing", + "code":"406", + "des":"A port number (for example, 8443) has been specified in a model configuration file. If you do not specify a port (default port 8080 will be used then) or specify another ", "doc_type":"usermanual", - "kw":"How Do I Import a Model Downloaded from OBS to ModelArts?,Model Management,User Guide", + "kw":"How Do I Change the Default Port to Create a Real-Time Service Using a Custom Image?,Importing Model", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], - "title":"How Do I Import a Model Downloaded from OBS to ModelArts?", + "title":"How Do I Change the Default Port to Create a Real-Time Service Using a Custom Image?", + "githuburl":"" + }, + { + "uri":"modelarts_06_0008.html", + "node_id":"en-us_topic_0000001943979101.xml", + "product_code":"modelarts", + "code":"407", + "des":"During the creation of an AI application, every key event is automatically recorded. You can view the events on the details page of the AI application at any time.The fol", + "doc_type":"usermanual", + "kw":"What Are the Events and Their Types for an AI application?,Importing Models,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Are the Events and Their Types for an AI application?", "githuburl":"" }, { "uri":"modelarts_05_0017.html", - "node_id":"modelarts_05_0017.xml", + "node_id":"en-us_topic_0000001910058370.xml", "product_code":"modelarts", - "code":"261", + "code":"408", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Service Deployment", @@ -5323,62 +8074,499 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], "title":"Service Deployment", "githuburl":"" }, { - "uri":"modelarts_05_0012.html", - "node_id":"modelarts_05_0012.xml", + "uri":"modelarts_05_0208.html", + "node_id":"en-us_topic_0000001910018414.xml", "product_code":"modelarts", - "code":"262", - "des":"Models can be deployed as real-time services or batch services.", + "code":"409", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", - "kw":"What Types of Services Can Models Be Deployed as on ModelArts?,Service Deployment,User Guide", + "kw":"Functional Consulting", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Functional Consulting", + "githuburl":"" + }, + { + "uri":"modelarts_05_0012.html", + "node_id":"en-us_topic_0000001910018274.xml", + "product_code":"modelarts", + "code":"410", + "des":"Models can be deployed as real-time services or batch services.", + "doc_type":"usermanual", + "kw":"What Types of Services Can Models Be Deployed as on ModelArts?,Functional Consulting,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], "title":"What Types of Services Can Models Be Deployed as on ModelArts?", "githuburl":"" }, { - "uri":"modelarts_05_0100.html", - "node_id":"modelarts_05_0100.xml", + "uri":"modelarts_05_0356.html", + "node_id":"en-us_topic_0000001910018622.xml", "product_code":"modelarts", - "code":"263", - "des":"Before importing a model, you need to place the corresponding inference code and configuration file in the model folder. When encoding with Python, you are advised to use", + "code":"411", + "des":"Real-Time ServicesModels are deployed as web services. You can access the services through the management console or APIs.Models are deployed as web services. You can acc", "doc_type":"usermanual", - "kw":"What Should I Do If a Conflict Occurs When Deploying a Model As a Real-Time Service?,Service Deploym", + "kw":"What Are the Differences Between Real-Time Services and Batch Services?,Functional Consulting,User G", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" } ], - "title":"What Should I Do If a Conflict Occurs When Deploying a Model As a Real-Time Service?", + "title":"What Are the Differences Between Real-Time Services and Batch Services?", "githuburl":"" }, { - "uri":"trouble-modelarts-0000.html", - "node_id":"trouble-modelarts-0000.xml", + "uri":"modelarts_05_3157.html", + "node_id":"en-us_topic_0000001910019874.xml", "product_code":"modelarts", - "code":"264", + "code":"412", + "des":"Before deploying a service, specify node specifications. The node specifications displayed on the GUI are calculated by ModelArts based on the target AI application and t", + "doc_type":"usermanual", + "kw":"How Do I Select Compute Node Specifications for Deploying a Service?,Functional Consulting,User Guid", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Select Compute Node Specifications for Deploying a Service?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3158.html", + "node_id":"en-us_topic_0000001943977885.xml", + "product_code":"modelarts", + "code":"413", + "des":"CUDA 10.2 is supported by default. If a later version is required, submit a service ticket to apply for technical support.", + "doc_type":"usermanual", + "kw":"What Is the CUDA Version for Deploying a Service on GPUs?,Functional Consulting,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Is the CUDA Version for Deploying a Service on GPUs?", + "githuburl":"" + }, + { + "uri":"modelarts_01_0023.html", + "node_id":"en-us_topic_0000001910019894.xml", + "product_code":"modelarts", + "code":"414", + "des":"During the whole lifecycle of a service, every key event is automatically recorded. You can view the events on the details page of the service at any time.The following t", + "doc_type":"usermanual", + "kw":"What Are the Events and Their Types for a Service?,Functional Consulting,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Are the Events and Their Types for a Service?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0217.html", + "node_id":"en-us_topic_0000001910058674.xml", + "product_code":"modelarts", + "code":"415", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Real-Time Services", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Real-Time Services", + "githuburl":"" + }, + { + "uri":"modelarts_05_0100.html", + "node_id":"en-us_topic_0000001943977597.xml", + "product_code":"modelarts", + "code":"416", + "des":"Before importing a model, save the inference code and configuration file in the model folder. When coding with Python, import custom packages in relative import (Python i", + "doc_type":"usermanual", + "kw":"What Do I Do If a Conflict Occurs in the Python Dependency Package of a Custom Prediction Script Whe", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If a Conflict Occurs in the Python Dependency Package of a Custom Prediction Script When I Deploy a Real-Time Service?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0364.html", + "node_id":"en-us_topic_0000001943977593.xml", + "product_code":"modelarts", + "code":"417", + "des":"After an AI application is deployed as a real-time service, you can use the API for inference.The format of an API is as follows:Example:", + "doc_type":"usermanual", + "kw":"What Is the Format of a Real-Time Service API?,Real-Time Services,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Is the Format of a Real-Time Service API?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3152.html", + "node_id":"en-us_topic_0000001910058294.xml", + "product_code":"modelarts", + "code":"418", + "des":"The available disk space of the node is smaller than the image size.Reduce the image size.If the problem persists after the image size is reduced, contact the system admi", + "doc_type":"usermanual", + "kw":"What Do I Do If an Image Fails to Be Pulled When a Real-Time Service Is Deployed, Started, Upgraded,", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If an Image Fails to Be Pulled When a Real-Time Service Is Deployed, Started, Upgraded, or Modified?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3153.html", + "node_id":"en-us_topic_0000001910018442.xml", + "product_code":"modelarts", + "code":"419", + "des":"There is a bug in the container image code.Debug the container image code based on container logs, create the AI application again, and deploy the application as a real-t", + "doc_type":"usermanual", + "kw":"What Do I Do If an Image Restarts Repeatedly When a Real-Time Service Is Deployed, Started, Upgraded", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If an Image Restarts Repeatedly When a Real-Time Service Is Deployed, Started, Upgraded, or Modified?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3155.html", + "node_id":"en-us_topic_0000001910058310.xml", + "product_code":"modelarts", + "code":"420", + "des":"The configured instance specifications are beyond the specifications provided by the resource pool.When resources are insufficient, ModelArts retries for three times. If ", + "doc_type":"usermanual", + "kw":"What Do I Do If Resources Are Insufficient When a Real-Time Service Is Deployed, Started, Upgraded, ", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If Resources Are Insufficient When a Real-Time Service Is Deployed, Started, Upgraded, or Modified?", + "githuburl":"" + }, + { + "uri":"modelarts_05_3207.html", + "node_id":"en-us_topic_0000001910018626.xml", + "product_code":"modelarts", + "code":"421", + "des":"A model can properly start after a service is deployed. The startup status of a model can be detected through a health check.Check whether a service is deployed using a h", + "doc_type":"usermanual", + "kw":"Why Did My Service Deployment Fail with Proper Deployment Timeout Configured?,Real-Time Services,Use", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Why Did My Service Deployment Fail with Proper Deployment Timeout Configured?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0200.html", + "node_id":"en-us_topic_0000001943977769.xml", + "product_code":"modelarts", + "code":"422", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"API/SDK", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"API/SDK", + "githuburl":"" + }, + { + "uri":"modelarts_05_0201.html", + "node_id":"en-us_topic_0000001943977433.xml", + "product_code":"modelarts", + "code":"423", + "des":"ModelArts APIs or SDKs cannot be used to download models to a local PC. However, the output models of training jobs are stored in OBS. You can use OBS APIs or SDKs to dow", + "doc_type":"usermanual", + "kw":"Can ModelArts APIs or SDKs Be Used to Download Models to a Local PC?,API/SDK,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Can ModelArts APIs or SDKs Be Used to Download Models to a Local PC?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0227.html", + "node_id":"en-us_topic_0000001943977893.xml", + "product_code":"modelarts", + "code":"424", + "des":"ModelArts SDKs can run in notebook or local environments. However, the supported environments vary depending on architectures. For details, see Table 1.", + "doc_type":"usermanual", + "kw":"What Installation Environments Do ModelArts SDKs Support?,API/SDK,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Installation Environments Do ModelArts SDKs Support?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0228.html", + "node_id":"en-us_topic_0000001910018374.xml", + "product_code":"modelarts", + "code":"425", + "des":"In the same region, ModelArts uses the OBS API to access files stored in OBS over an intranet and does not consume public network traffic.If you download data from OBS th", + "doc_type":"usermanual", + "kw":"Does ModelArts Use the OBS API to Access OBS Files over an Intranet or the Internet?,API/SDK,User Gu", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Does ModelArts Use the OBS API to Access OBS Files over an Intranet or the Internet?", + "githuburl":"" + }, + { + "uri":"modelarts_05_0296.html", + "node_id":"en-us_topic_0000001943977873.xml", + "product_code":"modelarts", + "code":"426", + "des":"After submitting a training job by calling an API, log in to the ModelArts console, choose Training Management > Training Jobs, and click the name or ID of the target tra", + "doc_type":"usermanual", + "kw":"How Do I Obtain a Job Resource Usage Curve After I Submit a Training Job by Calling an API?,API/SDK,", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I Obtain a Job Resource Usage Curve After I Submit a Training Job by Calling an API?", + "githuburl":"" + }, + { + "uri":"modelarts_15_0011.html", + "node_id":"en-us_topic_0000001910018186.xml", + "product_code":"modelarts", + "code":"427", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Using PyCharm Toolkit", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Using PyCharm Toolkit", + "githuburl":"" + }, + { + "uri":"modelarts_15_0012.html", + "node_id":"en-us_topic_0000001910058170.xml", + "product_code":"modelarts", + "code":"428", + "des":"The following error message is displayed during Toolkit installation.This issue occurs because the plug-in version is inconsistent with the PyCharm version. You need to o", + "doc_type":"usermanual", + "kw":"What Should I Do If an Error Occurs During Toolkit Installation?,Using PyCharm Toolkit,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Should I Do If an Error Occurs During Toolkit Installation?", + "githuburl":"" + }, + { + "uri":"modelarts_15_0013.html", + "node_id":"en-us_topic_0000001943977385.xml", + "product_code":"modelarts", + "code":"429", + "des":"If code that does not belong to the used project is selected in a boot script, training cannot be started. The following figure shows error information. You are advised t", + "doc_type":"usermanual", + "kw":"Why Cannot I Start Training?,Using PyCharm Toolkit,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"Why Cannot I Start Training?", + "githuburl":"" + }, + { + "uri":"modelarts_15_0020.html", + "node_id":"en-us_topic_0000001943977649.xml", + "product_code":"modelarts", + "code":"430", + "des":"Error \"xxx isn't existed in train_version\" occurs when a training job is submitted. See the following figure.The preceding error occurs because the user logs in to the Mo", + "doc_type":"usermanual", + "kw":"What Should I Do If Error \"xxx isn't existed in train_version\" Occurs When a Training Job Is Submitt", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Should I Do If Error \"xxx isn't existed in train_version\" Occurs When a Training Job Is Submitted?", + "githuburl":"" + }, + { + "uri":"modelarts_15_0021.html", + "node_id":"en-us_topic_0000001910018158.xml", + "product_code":"modelarts", + "code":"431", + "des":"When a training job is running, the \"Invalid OBS path\" error is reported.To locate the fault, perform the following operations:If you are using ModelArts for the first ti", + "doc_type":"usermanual", + "kw":"What Should I Do If an Error Occurs When I Submit a Training Job?,Using PyCharm Toolkit,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"What Should I Do If an Error Occurs When I Submit a Training Job?", + "githuburl":"" + }, + { + "uri":"modelarts_15_0022.html", + "node_id":"en-us_topic_0000001910018546.xml", + "product_code":"modelarts", + "code":"432", + "des":"The error logs of PyCharm Toolkit are recorded in the idea.log file of PyCharm. For example, in the Windows operating system, the path of the idea.log file is C:\\Users\\xx", + "doc_type":"usermanual", + "kw":"How Do I View Error Logs of PyCharm Toolkit?,Using PyCharm Toolkit,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"Yes", + "documenttype":"usermanual" + } + ], + "title":"How Do I View Error Logs of PyCharm Toolkit?", + "githuburl":"" + }, + { + "uri":"modelarts_77_0155.html", + "node_id":"en-us_topic_0000001943969845.xml", + "product_code":"modelarts", + "code":"433", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Troubleshooting", @@ -5386,20 +8574,898 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Troubleshooting", "githuburl":"" }, { - "uri":"modelarts_13_0070.html", - "node_id":"modelarts_13_0070.xml", + "uri":"modelarts_13_0119.html", + "node_id":"en-us_topic_0000001910008664.xml", "product_code":"modelarts", - "code":"265", + "code":"434", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"General Issues", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"General Issues", + "githuburl":"" + }, + { + "uri":"modelarts_13_0157.html", + "node_id":"en-us_topic_0000001910008608.xml", + "product_code":"modelarts", + "code":"435", + "des":"When ModelArts attempts to use an OBS bucket path, a message is displayed, indicating that the created OBS bucket is unavailable.Alternatively, error message \"ModelArts.2", + "doc_type":"usermanual", + "kw":"Incorrect OBS Path on ModelArts,General Issues,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Incorrect OBS Path on ModelArts", + "githuburl":"" + }, + { + "uri":"modelarts_05_0166.html", + "node_id":"en-us_topic_0000001943967881.xml", + "product_code":"modelarts", + "code":"436", + "des":"Message \"Error: stat:403\" is displayed when I use mox.file.copy_parallel in ModelArts to perform operations on OBS.ModelArts uses an AK/SK for authentication globally, an", + "doc_type":"usermanual", + "kw":"Why Error: 403 Forbidden Is Displayed When I Perform Operations on OBS?,General Issues,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Why Error: 403 Forbidden Is Displayed When I Perform Operations on OBS?", + "githuburl":"" + }, + { + "uri":"modelarts_13_0046.html", + "node_id":"en-us_topic_0000001909848700.xml", + "product_code":"modelarts", + "code":"437", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"ExeML", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"ExeML", + "githuburl":"" + }, + { + "uri":"modelarts_13_0055.html", + "node_id":"en-us_topic_0000001943967917.xml", + "product_code":"modelarts", + "code":"438", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Preparing Data", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Preparing Data", + "githuburl":"" + }, + { + "uri":"modelarts_13_0047.html", + "node_id":"en-us_topic_0000001943972125.xml", + "product_code":"modelarts", + "code":"439", + "des":"If this fault occurs, the data does not meet the requirements of the data management module. As a result, the dataset fails to be published and the following operations c", + "doc_type":"usermanual", + "kw":"Failed to Publish a Dataset Version,Preparing Data,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Failed to Publish a Dataset Version", + "githuburl":"" + }, + { + "uri":"modelarts_13_0048.html", + "node_id":"en-us_topic_0000001909848572.xml", + "product_code":"modelarts", + "code":"440", + "des":"If this issue occurs, the dataset version is successfully released but does not meet the requirements of the ExeML training jobs. As a result, an error message is display", + "doc_type":"usermanual", + "kw":"Invalid Dataset Version,Preparing Data,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Invalid Dataset Version", + "githuburl":"" + }, + { + "uri":"modelarts_13_0056.html", + "node_id":"en-us_topic_0000001943968001.xml", + "product_code":"modelarts", + "code":"441", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Training a Model", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Training a Model", + "githuburl":"" + }, + { + "uri":"modelarts_13_0049.html", + "node_id":"en-us_topic_0000001943967733.xml", + "product_code":"modelarts", + "code":"442", + "des":"This fault is typically caused by a backend service failure. Recreate the training job later. If the fault persists after three retries, contact .", + "doc_type":"usermanual", + "kw":"Failed to Create an ExeML-powered Training Job,Training a Model,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Failed to Create an ExeML-powered Training Job", + "githuburl":"" + }, + { + "uri":"modelarts_13_0057.html", + "node_id":"en-us_topic_0000001909848808.xml", + "product_code":"modelarts", + "code":"443", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Deploying a Model", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Deploying a Model", + "githuburl":"" + }, + { + "uri":"modelarts_13_0053.html", + "node_id":"en-us_topic_0000001909848524.xml", + "product_code":"modelarts", + "code":"444", + "des":"This fault is typically caused by the limited quota of the account.In an ExeML project, after the deployment is started, the model is automatically deployed as a real-tim", + "doc_type":"usermanual", + "kw":"Failed to Submit the Real-time Service Deployment Task,Deploying a Model,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Failed to Submit the Real-time Service Deployment Task", + "githuburl":"" + }, + { + "uri":"modelarts_13_0054.html", + "node_id":"en-us_topic_0000001943967981.xml", + "product_code":"modelarts", + "code":"445", + "des":"This fault is typically caused by a backend service failure. You are advised to redeploy the real-time service later. If the fault persists after three retries, obtain th", + "doc_type":"usermanual", + "kw":"Failed to Deploy a Real-time Service,Deploying a Model,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Failed to Deploy a Real-time Service", + "githuburl":"" + }, + { + "uri":"modelarts_13_0001.html", + "node_id":"en-us_topic_0000001910008788.xml", + "product_code":"modelarts", + "code":"446", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"DevEnviron (Notebook of New Version)", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"DevEnviron (Notebook of New Version)", + "githuburl":"" + }, + { + "uri":"modelarts_13_0100.html", + "node_id":"en-us_topic_0000001910008776.xml", + "product_code":"modelarts", + "code":"447", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"OBS Operation Faults", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"OBS Operation Faults", + "githuburl":"" + }, + { + "uri":"modelarts_13_0101.html", + "node_id":"en-us_topic_0000001909848540.xml", + "product_code":"modelarts", + "code":"448", + "des":"Message \"Error: stat:403\" is displayed when I use mox.file.copy_parallel in ModelArts to perform operations on OBS.ModelArts uses an AK/SK for authentication globally, an", + "doc_type":"usermanual", + "kw":"Why Error: 403 Forbidden Is Displayed When I Perform Operations on OBS?,OBS Operation Faults,User Gu", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Why Error: 403 Forbidden Is Displayed When I Perform Operations on OBS?", + "githuburl":"" + }, + { + "uri":"modelarts_13_0103.html", + "node_id":"en-us_topic_0000001943967969.xml", + "product_code":"modelarts", + "code":"449", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Environment Configuration Faults", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Environment Configuration Faults", + "githuburl":"" + }, + { + "uri":"modelarts_13_0006.html", + "node_id":"en-us_topic_0000001910008504.xml", + "product_code":"modelarts", + "code":"450", + "des":"Error message \"No Space left on Device\" is displayed when a notebook instance is used.Error message \"Disk quota exceeded\" is displayed when code is executed in a notebook", + "doc_type":"usermanual", + "kw":"Disk Space Used Up,Environment Configuration Faults,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Disk Space Used Up", + "githuburl":"" + }, + { + "uri":"modelarts_13_0105.html", + "node_id":"en-us_topic_0000001910008656.xml", + "product_code":"modelarts", + "code":"451", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Instance Faults", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Instance Faults", + "githuburl":"" + }, + { + "uri":"modelarts_13_0106.html", + "node_id":"en-us_topic_0000001943967897.xml", + "product_code":"modelarts", + "code":"452", + "des":"Troubleshoot the issue based on error code.If this error is reported when an IAM user creates an instance, the IAM user does not have the permissions to access the corres", + "doc_type":"usermanual", + "kw":"What Do I Do If I Cannot Access My Notebook Instance?,Instance Faults,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If I Cannot Access My Notebook Instance?", + "githuburl":"" + }, + { + "uri":"modelarts_13_0107.html", + "node_id":"en-us_topic_0000001910008496.xml", + "product_code":"modelarts", + "code":"453", + "des":"In the notebook instance, error message \"No Space left...\" is displayed after the pip install command is run.You are advised to run the pip install --no-cache ** command", + "doc_type":"usermanual", + "kw":"What Should I Do When the System Displays an Error Message Indicating that No Space Left After I Run", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"What Should I Do When the System Displays an Error Message Indicating that No Space Left After I Run the pip install Command?", + "githuburl":"" + }, + { + "uri":"modelarts_13_0108.html", + "node_id":"en-us_topic_0000001943967725.xml", + "product_code":"modelarts", + "code":"454", + "des":"If the notebook instance can run the code but cannot save it, the error message \"save error\" is displayed when you save the file. In most cases, this error is caused by a", + "doc_type":"usermanual", + "kw":"What Do I Do If the Code Can Be Run But Cannot Be Saved, and the Error Message \"save error\" Is Displ", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If the Code Can Be Run But Cannot Be Saved, and the Error Message \"save error\" Is Displayed?", + "githuburl":"" + }, + { + "uri":"modelarts_13_0042.html", + "node_id":"en-us_topic_0000001910008824.xml", + "product_code":"modelarts", + "code":"455", + "des":"When you use a notebook instance, the ModelArts.6333 error is displayed.The fault may be caused by instance overload. The notebook instance automatically restores. Refres", + "doc_type":"usermanual", + "kw":"ModelArts.6333 Error Occurs,Instance Faults,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"ModelArts.6333 Error Occurs", + "githuburl":"" + }, + { + "uri":"modelarts_13_0112.html", + "node_id":"en-us_topic_0000001910008836.xml", + "product_code":"modelarts", + "code":"456", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Code Running Failures", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Code Running Failures", + "githuburl":"" + }, + { + "uri":"modelarts_13_0008.html", + "node_id":"en-us_topic_0000001909848584.xml", + "product_code":"modelarts", + "code":"457", + "des":"When the a notebook instance is used to run code, the following error occurs:Check whether a large amount of data is saved in /tmp.Go to the Terminal page. In the /tmp di", + "doc_type":"usermanual", + "kw":"Error Occurs When Using a Notebook Instance to Run Code, Indicating That No File Is Found in /tmp,Co", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Error Occurs When Using a Notebook Instance to Run Code, Indicating That No File Is Found in /tmp", + "githuburl":"" + }, + { + "uri":"modelarts_13_0113.html", + "node_id":"en-us_topic_0000001943972153.xml", + "product_code":"modelarts", + "code":"458", + "des":"If a notebook instance fails to execute code, you can locate and rectify the fault as follows:If the execution of a cell is suspended or lasts for a long time (for exampl", + "doc_type":"usermanual", + "kw":"What Do I Do If a Notebook Instance Won't Run My Code?,Code Running Failures,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If a Notebook Instance Won't Run My Code?", + "githuburl":"" + }, + { + "uri":"modelarts_13_0114.html", + "node_id":"en-us_topic_0000001909852932.xml", + "product_code":"modelarts", + "code":"459", + "des":"The notebook instance breaks down during training code running due to insufficient memory caused by large data volume or excessive training layers.After this error occurs", + "doc_type":"usermanual", + "kw":"Why Does the Instance Break Down When dead kernel Is Displayed During Training Code Running?,Code Ru", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Why Does the Instance Break Down When dead kernel Is Displayed During Training Code Running?", + "githuburl":"" + }, + { + "uri":"modelarts_13_0115.html", + "node_id":"en-us_topic_0000001909852916.xml", + "product_code":"modelarts", + "code":"460", + "des":"The following error occurs when the training code is executed in a notebook:Parameters arch and code in setup.py have not been set to match the GPU compute power.For Tesl", + "doc_type":"usermanual", + "kw":"What Do I Do If cudaCheckError Occurs During Training?,Code Running Failures,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If cudaCheckError Occurs During Training?", + "githuburl":"" + }, + { + "uri":"modelarts_13_0116.html", + "node_id":"en-us_topic_0000001910012924.xml", + "product_code":"modelarts", + "code":"461", + "des":"If space is insufficient, you are advised to use notebook instances of the EVS type.For existing notebook instances, upload the codes and data to the OBS bucket. For deta", + "doc_type":"usermanual", + "kw":"What Should I Do If DevEnviron Prompts Insufficient Space?,Code Running Failures,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"What Should I Do If DevEnviron Prompts Insufficient Space?", + "githuburl":"" + }, + { + "uri":"modelarts_13_0117.html", + "node_id":"en-us_topic_0000001943972133.xml", + "product_code":"modelarts", + "code":"462", + "des":"When opencv.imshow is used in a notebook instance, the notebook instance breaks down.The cv2.imshow function in OpenCV malfunctions in a client/server environment such as", + "doc_type":"usermanual", + "kw":"Why Does the Notebook Instance Break Down When opencv.imshow Is Used?,Code Running Failures,User Gui", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Why Does the Notebook Instance Break Down When opencv.imshow Is Used?", + "githuburl":"" + }, + { + "uri":"modelarts_13_0118.html", + "node_id":"en-us_topic_0000001910012932.xml", + "product_code":"modelarts", + "code":"463", + "des":"When a text file generated in Windows is used in a notebook instance, the text content cannot be read and an error message may be displayed indicating that the path canno", + "doc_type":"usermanual", + "kw":"Why Cannot the Path of a Text File Generated in Windows OS Be Found In a Notebook Instance?,Code Run", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Why Cannot the Path of a Text File Generated in Windows OS Be Found In a Notebook Instance?", + "githuburl":"" + }, + { + "uri":"modelarts_13_0246.html", + "node_id":"en-us_topic_0000001909848592.xml", + "product_code":"modelarts", + "code":"464", + "des":"After a notebook file is created, \"No Kernel\" is displayed in the upper right corner of the page.The code.py file in the work directory conflicts with the name of the imp", + "doc_type":"usermanual", + "kw":"What Do I Do If No Kernel Is Displayed After a Notebook File Is Created?,Code Running Failures,User ", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If No Kernel Is Displayed After a Notebook File Is Created?", + "githuburl":"" + }, + { + "uri":"modelarts_13_0255.html", + "node_id":"en-us_topic_0000001943967745.xml", + "product_code":"modelarts", + "code":"465", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"JupyterLab Plug-in Faults", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"JupyterLab Plug-in Faults", + "githuburl":"" + }, + { + "uri":"modelarts_13_0256.html", + "node_id":"en-us_topic_0000001909852888.xml", + "product_code":"modelarts", + "code":"466", + "des":"If the Git plug-in is used in JupyterLab, when a private repository is cloned or a file is pushed, an error occurs.The authorization using a password has been canceled in", + "doc_type":"usermanual", + "kw":"What Do I Do If the Git Plug-in Password Is Invalid?,JupyterLab Plug-in Faults,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"What Do I Do If the Git Plug-in Password Is Invalid?", + "githuburl":"" + }, + { + "uri":"modelarts_13_0202.html", + "node_id":"en-us_topic_0000001943967977.xml", + "product_code":"modelarts", + "code":"467", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Other Faults", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Other Faults", + "githuburl":"" + }, + { + "uri":"modelarts_05_3171.html", + "node_id":"en-us_topic_0000001910008712.xml", + "product_code":"modelarts", + "code":"468", + "des":"checkpoints is a keyword in notebook. If a created folder is named checkpoints, the folder will not be opened, renamed, or deleted on JupyterLab.ProcedureOpen the termina", + "doc_type":"usermanual", + "kw":"Failed to Open the checkpoints Folder in Notebook,Other Faults,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Failed to Open the checkpoints Folder in Notebook", + "githuburl":"" + }, + { + "uri":"modelarts_05_3180.html", + "node_id":"en-us_topic_0000001943967849.xml", + "product_code":"modelarts", + "code":"469", + "des":"A dedicated resource pool that has been purchased cannot be selected for creating a notebook instance, resulting in the creation failure.A message is displayed, indicatin", + "doc_type":"usermanual", + "kw":"Failed to Use a Purchased Dedicated Resource Pool to Create New-Version Notebook Instances,Other Fau", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Failed to Use a Purchased Dedicated Resource Pool to Create New-Version Notebook Instances", + "githuburl":"" + }, + { + "uri":"modelarts_13_0214.html", + "node_id":"en-us_topic_0000001910008516.xml", + "product_code":"modelarts", + "code":"470", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"DevEnviron (Notebook of Old Version)", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"DevEnviron (Notebook of Old Version)", + "githuburl":"" + }, + { + "uri":"modelarts_13_0004.html", + "node_id":"en-us_topic_0000001943967833.xml", + "product_code":"modelarts", + "code":"471", + "des":"The following error occurs when synchronizing data from OBS to a notebook instance: obs sync failed. As a result, the notebook instance cannot be used properly.If you set", + "doc_type":"usermanual", + "kw":"Error Occurs When Using Sync OBS to Synchronize Data from OBS. Is There Any Restriction on the Total", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Error Occurs When Using Sync OBS to Synchronize Data from OBS. Is There Any Restriction on the Total Size of Files for Synchronization?", + "githuburl":"" + }, + { + "uri":"modelarts_13_0002.html", + "node_id":"en-us_topic_0000001910008648.xml", + "product_code":"modelarts", + "code":"472", + "des":"The environment failed to be accessed after the user runs the source activate xxx command in Terminal.The basic framework package or the package installed by running the ", + "doc_type":"usermanual", + "kw":"Terminal Environment Access Fails and Error Occurs When a Third-party Installation Package Iis Impor", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Terminal Environment Access Fails and Error Occurs When a Third-party Installation Package Iis Imported", + "githuburl":"" + }, + { + "uri":"modelarts_13_0110.html", + "node_id":"en-us_topic_0000001910008692.xml", + "product_code":"modelarts", + "code":"473", + "des":"On the Notebook Jupyter page, \"Error loading notebook\" is displayed when an IPYNB file is created.This issue may be caused by the attributes of the OBS bucket selected du", + "doc_type":"usermanual", + "kw":"\"Error loading notebook\" Occurred When an IPYNB File Is Created,DevEnviron (Notebook of Old Version)", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"\"Error loading notebook\" Occurred When an IPYNB File Is Created", + "githuburl":"" + }, + { + "uri":"modelarts_13_0003.html", + "node_id":"en-us_topic_0000001909848476.xml", + "product_code":"modelarts", + "code":"474", + "des":"After the user run the python a.py command in the Terminal environment of a notebook instance, the .py file in the same directory failed to be referenced, and the followi", + "doc_type":"usermanual", + "kw":"Notebook Instance Failed to Reference the .py File in the Same Directory,DevEnviron (Notebook of Old", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Notebook Instance Failed to Reference the .py File in the Same Directory", + "githuburl":"" + }, + { + "uri":"modelarts_13_0007.html", + "node_id":"en-us_topic_0000001943967929.xml", + "product_code":"modelarts", + "code":"475", + "des":"The following error occurs when a user saves the ipynb file on the Jupyter page accessed using a notebook instance: The file has changed on disk since the last time we op", + "doc_type":"usermanual", + "kw":"Error Occurs When the ipynb File Is Saved,DevEnviron (Notebook of Old Version),User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Error Occurs When the ipynb File Is Saved", + "githuburl":"" + }, + { + "uri":"modelarts_13_0104.html", + "node_id":"en-us_topic_0000001943967721.xml", + "product_code":"modelarts", + "code":"476", + "des":"Obtain the address of the Python library to be imported, and follow the instructions in Adding Folders to sys.path of Python 3 to import the Python library. There are two", + "doc_type":"usermanual", + "kw":"How Do I Import a Python Library to a Notebook Instance to Resolve the ModuleNotFoundError Error?,De", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"How Do I Import a Python Library to a Notebook Instance to Resolve the ModuleNotFoundError Error?", + "githuburl":"" + }, + { + "uri":"modelarts_13_0009.html", + "node_id":"en-us_topic_0000001909848644.xml", + "product_code":"modelarts", + "code":"477", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Training Jobs", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Training Jobs", + "githuburl":"" + }, + { + "uri":"modelarts_13_0070.html", + "node_id":"en-us_topic_0000001910008592.xml", + "product_code":"modelarts", + "code":"478", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"OBS Operation Issues", @@ -5407,10 +9473,9 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"OBS Operation Issues", @@ -5418,9 +9483,9 @@ }, { "uri":"modelarts_13_0018.html", - "node_id":"modelarts_13_0018.xml", + "node_id":"en-us_topic_0000001943967809.xml", "product_code":"modelarts", - "code":"266", + "code":"479", "des":"How to read the json and npy files when creating a training job.How the training job uses the cv2 library to read files.How to use the torch package in the MXNet environm", "doc_type":"usermanual", "kw":"Failed to Correctly Read Files,OBS Operation Issues,User Guide", @@ -5428,10 +9493,9 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Failed to Correctly Read Files", @@ -5439,9 +9503,9 @@ }, { "uri":"modelarts_13_0019.html", - "node_id":"modelarts_13_0019.xml", + "node_id":"en-us_topic_0000001943967857.xml", "product_code":"modelarts", - "code":"267", + "code":"480", "des":"After a training job is started based on TensorFlow-1.8 and the tf.gfile module is used to connect to OBS in code, the following log information is frequently printed:Thi", "doc_type":"usermanual", "kw":"Error Message Is Displayed Repeatedly When a TensorFlow-1.8 Job Is Connected to OBS,OBS Operation Is", @@ -5449,10 +9513,9 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Error Message Is Displayed Repeatedly When a TensorFlow-1.8 Job Is Connected to OBS", @@ -5460,9 +9523,9 @@ }, { "uri":"modelarts_13_0022.html", - "node_id":"modelarts_13_0022.xml", + "node_id":"en-us_topic_0000001910008508.xml", "product_code":"modelarts", - "code":"268", + "code":"481", "des":"The following error message is displayed for a ModelArts training job:The size of files to be uploaded at a time is limited to 5 GB in OBS. TensorFlow may save the summar", "doc_type":"usermanual", "kw":"TensorFlow Stops Writing TensorBoard to OBS When the Size of Written Data Reaches 5 GB,OBS Operation", @@ -5470,10 +9533,9 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"TensorFlow Stops Writing TensorBoard to OBS When the Size of Written Data Reaches 5 GB", @@ -5481,9 +9543,9 @@ }, { "uri":"modelarts_13_0020.html", - "node_id":"modelarts_13_0020.xml", + "node_id":"en-us_topic_0000001943967865.xml", "product_code":"modelarts", - "code":"269", + "code":"482", "des":"An error occurs in the log when a model is saved in a training job. The error details are as follows:InternalError (see above for traceback): : Unable to connect to endpo", "doc_type":"usermanual", "kw":"Error \"Unable to connect to endpoint\" Error Occurs When a Model Is Saved,OBS Operation Issues,User G", @@ -5491,20 +9553,19 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Error \"Unable to connect to endpoint\" Error Occurs When a Model Is Saved", "githuburl":"" }, { - "uri":"modelarts_05_0032.html", - "node_id":"modelarts_05_0032.xml", + "uri":"modelarts_13_0121.html", + "node_id":"en-us_topic_0000001910008808.xml", "product_code":"modelarts", - "code":"270", + "code":"483", "des":"When you use ModelArts, your data is stored in an OBS bucket. There is an OBS path to your data, for example, bucket_name/dir/image.jpg. ModelArts training jobs run in co", "doc_type":"usermanual", "kw":"What Do I Do If Error Message \"No such file or directory\" Is Displayed in Training Job Logs?,OBS Ope", @@ -5512,10 +9573,9 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"What Do I Do If Error Message \"No such file or directory\" Is Displayed in Training Job Logs?", @@ -5523,9 +9583,9 @@ }, { "uri":"modelarts_trouble_0042.html", - "node_id":"modelarts_trouble_0042.xml", + "node_id":"en-us_topic_0000001909848776.xml", "product_code":"modelarts", - "code":"271", + "code":"484", "des":"The error message is displayed when MoXing is used to copy data for a training job.The possible causes are as follows:In a large-scale distributed job, multiple nodes are", "doc_type":"usermanual", "kw":"Error Message \"BrokenPipeError: Broken pipe\" Displayed When OBS Data Is Copied,OBS Operation Issues", @@ -5533,62 +9593,39 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Error Message \"BrokenPipeError: Broken pipe\" Displayed When OBS Data Is Copied", "githuburl":"" }, - { - "uri":"modelarts_trouble_0048.html", - "node_id":"modelarts_trouble_0048.xml", - "product_code":"modelarts", - "code":"272", - "des":"When TensorBoard is used to directly write data in an OBS path for a training job, an error similar to the following is displayed.The possible causes are as follows:It is", - "doc_type":"usermanual", - "kw":"Error Message \"ValueError: Invalid endpoint: obs.xxxx.com\" Displayed in Logs,OBS Operation Issues,Us", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Error Message \"ValueError: Invalid endpoint: obs.xxxx.com\" Displayed in Logs", - "githuburl":"" - }, { "uri":"modelarts_trouble_0035.html", - "node_id":"modelarts_trouble_0035.xml", + "node_id":"en-us_topic_0000001909848672.xml", "product_code":"modelarts", - "code":"273", + "code":"485", "des":"When MoXing is used to access an OBS path, the following error is displayed:ERROR:root:\nstat:404\nerrorCode:NoSuchKey\nerrorMessage:The specified key does not exist.The pos", "doc_type":"usermanual", - "kw":"Error Message \"errorMessage:The specified bucket does not exist\" Displayed in Logs,OBS Operation Iss", + "kw":"Error Message \"errorMessage:The specified key does not exist\" Displayed in Logs,OBS Operation Issues", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Error Message \"errorMessage:The specified bucket does not exist\" Displayed in Logs", + "title":"Error Message \"errorMessage:The specified key does not exist\" Displayed in Logs", "githuburl":"" }, { "uri":"modelarts_13_0071.html", - "node_id":"modelarts_13_0071.xml", + "node_id":"en-us_topic_0000001909848544.xml", "product_code":"modelarts", - "code":"274", + "code":"486", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"In-Cloud Migration Adaptation Issues", @@ -5596,10 +9633,9 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"In-Cloud Migration Adaptation Issues", @@ -5607,9 +9643,9 @@ }, { "uri":"modelarts_13_0014.html", - "node_id":"modelarts_13_0014.xml", + "node_id":"en-us_topic_0000001909848676.xml", "product_code":"modelarts", - "code":"275", + "code":"487", "des":"The following error occurs in the log when a module is imported to a ModelArts training job:When a training job is imported to the module, the previous two error messages", "doc_type":"usermanual", "kw":"Failed to Import a Module,In-Cloud Migration Adaptation Issues,User Guide", @@ -5617,10 +9653,9 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Failed to Import a Module", @@ -5628,20 +9663,19 @@ }, { "uri":"modelarts_trouble_0015.html", - "node_id":"modelarts_trouble_0015.xml", + "node_id":"en-us_topic_0000001909848532.xml", "product_code":"modelarts", - "code":"276", - "des":"Perform the following operations to locate the fault:Checking Whether the Dependency Package Is AvailableChecking Whether the Dependency Package Path Can Be DetectedSumma", + "code":"488", + "des":"Perform the following operations to locate the fault:Checking Whether the Dependency Package Is AvailableChecking Whether the Dependency Package Path Can Be DetectedCheck", "doc_type":"usermanual", "kw":"Error Message \"No module named .*\" Displayed in Training Job Logs,In-Cloud Migration Adaptation Issu", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Error Message \"No module named .*\" Displayed in Training Job Logs", @@ -5649,20 +9683,19 @@ }, { "uri":"modelarts_13_0015.html", - "node_id":"modelarts_13_0015.xml", + "node_id":"en-us_topic_0000001943967785.xml", "product_code":"modelarts", - "code":"277", - "des":"Failed to install custom library functions for ModelArts, for example, apex.The following error occurs when a third-party package is installed in the ModelArts training e", + "code":"489", + "des":"How to install custom library functions for ModelArts, for example, apex.The following error occurs when a third-party package is installed in the ModelArts training envi", "doc_type":"usermanual", "kw":"Failed to Install a Third-Party Package,In-Cloud Migration Adaptation Issues,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Failed to Install a Third-Party Package", @@ -5670,9 +9703,9 @@ }, { "uri":"modelarts_13_0023.html", - "node_id":"modelarts_13_0023.xml", + "node_id":"en-us_topic_0000001909848556.xml", "product_code":"modelarts", - "code":"278", + "code":"490", "des":"The code directory fails to be downloaded during training job running, and the following error message is displayed. See Figure 1.The code directory specified during trai", "doc_type":"usermanual", "kw":"Failed to Download the Code Directory,In-Cloud Migration Adaptation Issues,User Guide", @@ -5680,94 +9713,49 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Failed to Download the Code Directory", "githuburl":"" }, - { - "uri":"modelarts_13_0039.html", - "node_id":"modelarts_13_0039.xml", - "product_code":"modelarts", - "code":"279", - "des":"The following error occurs in the ModelArts training job log:FileNotFoundError:[Errno 2]No such file or directory:'data_v.pickle'According to the error message, the file ", - "doc_type":"usermanual", - "kw":"Failed to Find a File in a Training Job,In-Cloud Migration Adaptation Issues,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Failed to Find a File in a Training Job", - "githuburl":"" - }, { "uri":"modelarts_trouble_0014.html", - "node_id":"modelarts_trouble_0014.xml", + "node_id":"en-us_topic_0000001910008640.xml", "product_code":"modelarts", - "code":"280", - "des":"Perform the following operations to locate the fault:Checking Whether the Affected Path Is an OBS PathChecking Whether the Affected Path Is AvailableSummary and Suggestio", + "code":"491", + "des":"If a training job failed, error message \"No such file or directory\" is displayed in logs.If a training input path is unreachable, error message \"No such file or directory", "doc_type":"usermanual", "kw":"Error Message \"No such file or directory\" Displayed in Training Job Logs,In-Cloud Migration Adaptati", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Error Message \"No such file or directory\" Displayed in Training Job Logs", "githuburl":"" }, - { - "uri":"modelarts_13_0044.html", - "node_id":"modelarts_13_0044.xml", - "product_code":"modelarts", - "code":"281", - "des":"During the execution of a ModelArts training job, the following error message is displayed in the log and the training failed:The CUDA version of the .so file generated d", - "doc_type":"usermanual", - "kw":"Failed to Find the .so File During Training,In-Cloud Migration Adaptation Issues,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Failed to Find the .so File During Training", - "githuburl":"" - }, { "uri":"modelarts_13_0012.html", - "node_id":"modelarts_13_0012.xml", + "node_id":"en-us_topic_0000001909848812.xml", "product_code":"modelarts", - "code":"282", - "des":"The ModelArts training job failed to parse parameters, and the following error occurs:The parameters are not defined.In the training environment, the system may pass para", + "code":"492", + "des":"The ModelArts training job failed to parse parameters, and the following error occurs:In the training environment, the system may transfer other parameter names that are ", "doc_type":"usermanual", "kw":"Failed to Parse Parameters and Log Error Occurs,In-Cloud Migration Adaptation Issues,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Failed to Parse Parameters and Log Error Occurs", @@ -5775,41 +9763,39 @@ }, { "uri":"modelarts_13_0029.html", - "node_id":"modelarts_13_0029.xml", + "node_id":"en-us_topic_0000001910008768.xml", "product_code":"modelarts", - "code":"283", + "code":"493", "des":"The following error message is displayed when a training job is created: Operation failed. Other running job contain train_url: /bucket-20181114/code_hxm/According to the", "doc_type":"usermanual", - "kw":"Training Output Path Used by Another Job,In-Cloud Migration Adaptation Issues,User Guide", + "kw":"Training Output Path Is Used by Another Job,In-Cloud Migration Adaptation Issues,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Training Output Path Used by Another Job", + "title":"Training Output Path Is Used by Another Job", "githuburl":"" }, { "uri":"modelarts_13_0013.html", - "node_id":"modelarts_13_0013.xml", + "node_id":"en-us_topic_0000001943968005.xml", "product_code":"modelarts", - "code":"284", - "des":"When a custom image was used to create a training job of the old version, error message \"No such file or directory\" was displayed.The directory of the boot file for runni", + "code":"494", + "des":"When a custom image is used to create a training job of the old version, error message \"No such file or directory\" is displayed.The directory of the boot file for running", "doc_type":"usermanual", "kw":"Failed to Find the Boot File When a Training Job Is Created Using a Custom Image,In-Cloud Migration ", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Failed to Find the Boot File When a Training Job Is Created Using a Custom Image", @@ -5817,20 +9803,19 @@ }, { "uri":"modelarts_trouble_0036.html", - "node_id":"modelarts_trouble_0036.xml", + "node_id":"en-us_topic_0000001909848580.xml", "product_code":"modelarts", - "code":"285", - "des":"When a PyTorch 1.0 image is used, the following error message is displayed:\"RuntimeError: std::exception\"The possible causes are as follows:The soft link of libmkldnn in ", + "code":"495", + "des":"When a PyTorch 1.0 image is used, the following error message is displayed:\"RuntimeError: std::exception\"The soft link of libmkldnn in the PyTorch 1.0 image conflicts wit", "doc_type":"usermanual", "kw":"Error Message \"RuntimeError: std::exception\" Displayed for a PyTorch 1.0 Engine,In-Cloud Migration A", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Error Message \"RuntimeError: std::exception\" Displayed for a PyTorch 1.0 Engine", @@ -5838,9 +9823,9 @@ }, { "uri":"modelarts_trouble_0054.html", - "node_id":"modelarts_trouble_0054.xml", + "node_id":"en-us_topic_0000001910008832.xml", "product_code":"modelarts", - "code":"286", + "code":"496", "des":"When MindSpore is used for training, the following error message is displayed:[ERROR] RUNTIME(3002)model execute error, retCode=0x91, [the model stream execute failed]The", "doc_type":"usermanual", "kw":"Error Message \"retCode=0x91, [the model stream execute failed]\" Displayed in MindSpore Logs,In-Cloud", @@ -5848,10 +9833,9 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Error Message \"retCode=0x91, [the model stream execute failed]\" Displayed in MindSpore Logs", @@ -5859,20 +9843,19 @@ }, { "uri":"modelarts_trouble_0033.html", - "node_id":"modelarts_trouble_0033.xml", + "node_id":"en-us_topic_0000001943967761.xml", "product_code":"modelarts", - "code":"287", - "des":"If MoXing is used to adapt to an OBS path, an error occurred when Pandas of a later version read data from an OBS file.1. 'can't decode byte xxx in position xxx'\n2. 'OSEr", + "code":"497", + "des":"If MoXing is used to adapt to an OBS path, an error occurs when pandas of a later version reads data from an OBS file.1. 'can't decode byte xxx in position xxx'\n2. 'OSErr", "doc_type":"usermanual", "kw":"Error Occurred When Pandas Reads Data from an OBS File If MoXing Is Used to Adapt to an OBS Path,In-", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Error Occurred When Pandas Reads Data from an OBS File If MoXing Is Used to Adapt to an OBS Path", @@ -5880,9 +9863,9 @@ }, { "uri":"modelarts_trouble_0052.html", - "node_id":"modelarts_trouble_0052.xml", + "node_id":"en-us_topic_0000001910008840.xml", "product_code":"modelarts", - "code":"288", + "code":"498", "des":"Dependency conflicts occur when other packages are installed. There are special requirements on the NumPy library. However, NumPy cannot be uninstalled. The error message", "doc_type":"usermanual", "kw":"Error Message \"Please upgrade numpy to >= xxx to use this pandas version\" Displayed in Logs,In-Cloud", @@ -5890,10 +9873,9 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Error Message \"Please upgrade numpy to >= xxx to use this pandas version\" Displayed in Logs", @@ -5901,30 +9883,69 @@ }, { "uri":"modelarts_trouble_0047.html", - "node_id":"modelarts_trouble_0047.xml", + "node_id":"en-us_topic_0000001943967873.xml", "product_code":"modelarts", - "code":"289", - "des":"An error occurred after the engine version was reinstalled or a new CUDA package was compiled based on the existing image.1. \"RuntimeError: cuda runtime error (11) : inva", + "code":"499", + "des":"An error occurs after the engine version is reinstalled or a new CUDA package is compiled based on the existing image.1. \"RuntimeError: cuda runtime error (11) : invalid ", "doc_type":"usermanual", "kw":"Reinstalled CUDA Version Does Not Match the One in the Target Image,In-Cloud Migration Adaptation Is", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Reinstalled CUDA Version Does Not Match the One in the Target Image", "githuburl":"" }, { - "uri":"modelarts_13_0072.html", - "node_id":"modelarts_13_0072.xml", + "uri":"modelarts_13_0159.html", + "node_id":"en-us_topic_0000001909848680.xml", "product_code":"modelarts", - "code":"290", + "code":"500", + "des":"When a training job is created, error code ModelArts.2763 is displayed, indicating that the selected instance is invalid.The selected training flavor does not match the a", + "doc_type":"usermanual", + "kw":"Error ModelArts.2763 Occurred During Training Job Creation,In-Cloud Migration Adaptation Issues,User", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Error ModelArts.2763 Occurred During Training Job Creation", + "githuburl":"" + }, + { + "uri":"modelarts_trouble_0141.html", + "node_id":"en-us_topic_0000001910008708.xml", + "product_code":"modelarts", + "code":"501", + "des":"After a training job is created, the system container exits unexpectedly.The possible causes are as follows:An error occurred in OBS.Unavailable file: The specified key d", + "doc_type":"usermanual", + "kw":"System Container Exits Unexpectedly,In-Cloud Migration Adaptation Issues,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"System Container Exits Unexpectedly", + "githuburl":"" + }, + { + "uri":"modelarts_13_0072.html", + "node_id":"en-us_topic_0000001910008488.xml", + "product_code":"modelarts", + "code":"502", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Memory Limit Issues", @@ -5932,41 +9953,19 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Memory Limit Issues", "githuburl":"" }, - { - "uri":"modelarts_13_0011.html", - "node_id":"modelarts_13_0011.xml", - "product_code":"modelarts", - "code":"291", - "des":"When data, code, or a model was copied during training, the following error message was displayed.The possible causes are as follows:The disk space is insufficient.When a", - "doc_type":"usermanual", - "kw":"Downloading Files Timed Out or No Space Left for Reading Data,Memory Limit Issues,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Downloading Files Timed Out or No Space Left for Reading Data", - "githuburl":"" - }, { "uri":"modelarts_13_0043.html", - "node_id":"modelarts_13_0043.xml", + "node_id":"en-us_topic_0000001909848704.xml", "product_code":"modelarts", - "code":"292", + "code":"503", "des":"When a ModelArts training job is running, the following error is reported in the log. As a result, data cannot be copied to the container.The container space is insuffici", "doc_type":"usermanual", "kw":"Insufficient Container Space for Copying Data,Memory Limit Issues,User Guide", @@ -5974,10 +9973,9 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Insufficient Container Space for Copying Data", @@ -5985,135 +9983,109 @@ }, { "uri":"modelarts_13_0025.html", - "node_id":"modelarts_13_0025.xml", + "node_id":"en-us_topic_0000001910008716.xml", "product_code":"modelarts", - "code":"293", + "code":"504", "des":"During training job creation, error message \"No space left\" is displayed when a TensorFlow multi-node job downloads data to /cache.In a TensorFlow multi-node job, the par", "doc_type":"usermanual", - "kw":"Error Message \"No space left\" Displayed When a Multi-node TensorFlow Job Downloads Data to /cache,Me", + "kw":"Error Message \"No space left\" Displayed When a TensorFlow Multi-node Job Downloads Data to /cache,Me", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Error Message \"No space left\" Displayed When a Multi-node TensorFlow Job Downloads Data to /cache", + "title":"Error Message \"No space left\" Displayed When a TensorFlow Multi-node Job Downloads Data to /cache", "githuburl":"" }, { "uri":"modelarts_13_0032.html", - "node_id":"modelarts_13_0032.xml", + "node_id":"en-us_topic_0000001909848500.xml", "product_code":"modelarts", - "code":"294", + "code":"505", "des":"An error occurs during the running of a ModelArts training job, indicating that the size of the log file has reached the limit.Error information indicates that the size o", "doc_type":"usermanual", - "kw":"Log File Size Reached the Upper Limit,Memory Limit Issues,User Guide", + "kw":"Size of the Log File Has Reached the Limit,Memory Limit Issues,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Log File Size Reached the Upper Limit", + "title":"Size of the Log File Has Reached the Limit", "githuburl":"" }, { "uri":"modelarts_trouble_0031.html", - "node_id":"modelarts_trouble_0031.xml", + "node_id":"en-us_topic_0000001909848596.xml", "product_code":"modelarts", - "code":"295", - "des":"During the program's execution, numerous \"write line error\" messages are generated. This issue recurred each time the program ran at a specific progress.The possible caus", + "code":"506", + "des":"During program running, a large number of error messages \"write line error\" are generated. This issue recurs each time the program runs at a specific progress.The possibl", "doc_type":"usermanual", "kw":"Error Message \"write line error\" Displayed in Logs,Memory Limit Issues,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Error Message \"write line error\" Displayed in Logs", "githuburl":"" }, - { - "uri":"modelarts_trouble_0041.html", - "node_id":"modelarts_trouble_0041.xml", - "product_code":"modelarts", - "code":"296", - "des":"When data, code, or a model was copied during training, the following error message was displayed.The possible causes are as follows:The disk space is insufficient.When a", - "doc_type":"usermanual", - "kw":"Error Message \"No space left on device\" Displayed in Logs,Memory Limit Issues,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Error Message \"No space left on device\" Displayed in Logs", - "githuburl":"" - }, { "uri":"modelarts_trouble_0044.html", - "node_id":"modelarts_trouble_0044.xml", + "node_id":"en-us_topic_0000001910008576.xml", "product_code":"modelarts", - "code":"297", - "des":"If a training job failed due to out of memory (OOM), possible symptoms were as follows:Error code 137 is returned.The log file contained error information with keyword ki", + "code":"507", + "des":"If a training job failed due to out of memory (OOM), possible symptoms as as follows:Error code 137 is returned.The log file contains error information with keyword kille", "doc_type":"usermanual", "kw":"Training Job Failed Due to OOM,Memory Limit Issues,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Training Job Failed Due to OOM", "githuburl":"" }, { - "uri":"modelarts_trouble_0040.html", - "node_id":"modelarts_trouble_0040.xml", + "uri":"modelarts_trouble_0142.html", + "node_id":"en-us_topic_0000001909848492.xml", "product_code":"modelarts", - "code":"298", - "des":"Executing a training job failed, and there is no error message in user logs. The error information is displayed in the Kubernetes job body.The possible causes are as foll", + "code":"508", + "des":"This section centrally describes common issues related to insufficient disk space and solutions to these issues.When data, code, or model is copied during training, error", "doc_type":"usermanual", - "kw":"Error Message \"Pod The node was low on resource:[DiskPressure]\" Displayed in the Kubernetes Job Body", + "kw":"Common Issues Related to Insufficient Disk Space and Solutions,Memory Limit Issues,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Error Message \"Pod The node was low on resource:[DiskPressure]\" Displayed in the Kubernetes Job Body", + "title":"Common Issues Related to Insufficient Disk Space and Solutions", "githuburl":"" }, { "uri":"modelarts_13_0077.html", - "node_id":"modelarts_13_0077.xml", + "node_id":"en-us_topic_0000001909848712.xml", "product_code":"modelarts", - "code":"299", + "code":"509", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Internet Access Issues", @@ -6121,10 +10093,9 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Internet Access Issues", @@ -6132,20 +10103,19 @@ }, { "uri":"modelarts_trouble_0034.html", - "node_id":"modelarts_trouble_0034.xml", + "node_id":"en-us_topic_0000001910008524.xml", "product_code":"modelarts", - "code":"300", - "des":"When PyTorch is used, the following error message is displayed in logs after pretrained in torchvision.models is set to True:'OSError: [Errno 101] Network is unreachable'", + "code":"510", + "des":"When PyTorch is used, the following error message will be displayed in logs after pretrained in torchvision.models is set to True:'OSError: [Errno 101] Network is unreach", "doc_type":"usermanual", "kw":"Error Message \"Network is unreachable\" Displayed in Logs,Internet Access Issues,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Error Message \"Network is unreachable\" Displayed in Logs", @@ -6153,9 +10123,9 @@ }, { "uri":"modelarts_13_0021.html", - "node_id":"modelarts_13_0021.xml", + "node_id":"en-us_topic_0000001909848628.xml", "product_code":"modelarts", - "code":"301", + "code":"511", "des":"In a running training job, a URL connection timeout error occurs.For security purposes, ModelArts is not allowed to access the Internet to download data.Download the requ", "doc_type":"usermanual", "kw":"URL Connection Timed Out in a Running Training Job,Internet Access Issues,User Guide", @@ -6163,10 +10133,9 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"URL Connection Timed Out in a Running Training Job", @@ -6174,9 +10143,9 @@ }, { "uri":"modelarts_13_0078.html", - "node_id":"modelarts_13_0078.xml", + "node_id":"en-us_topic_0000001909848588.xml", "product_code":"modelarts", - "code":"302", + "code":"512", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Permission Issues", @@ -6184,10 +10153,9 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Permission Issues", @@ -6195,30 +10163,29 @@ }, { "uri":"modelarts_trouble_0045.html", - "node_id":"modelarts_trouble_0045.xml", + "node_id":"en-us_topic_0000001910008568.xml", "product_code":"modelarts", - "code":"303", - "des":"When a training job accessed OBS, an error occurred.The possible causes are as follows (see Python > Troubleshooting > OBS Server-Side Error Codes in Object Storage Servi", + "code":"513", + "des":"When a training job accesses OBS, an error occurs.The possible causes are as follows:The OBS permission is incorrect. As a result, data cannot be read.Verify that OBS per", "doc_type":"usermanual", - "kw":"Error Message \"reason:Forbidden\" Displayed in Logs,Permission Issues,User Guide", + "kw":"What Should I Do If Error \"stat:403 reason:Forbidden\" Is Displayed in Logs When a Training Job Acces", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Error Message \"reason:Forbidden\" Displayed in Logs", + "title":"What Should I Do If Error \"stat:403 reason:Forbidden\" Is Displayed in Logs When a Training Job Accesses OBS", "githuburl":"" }, { "uri":"modelarts_trouble_0046.html", - "node_id":"modelarts_trouble_0046.xml", + "node_id":"en-us_topic_0000001909848508.xml", "product_code":"modelarts", - "code":"304", + "code":"514", "des":"When a training job accesses the attached EFS disks or executes the .sh boot script, an error occurs.[Errno 13]Permission denied: '/xxx/xxxx'Error logbash: /bin/ln: Permi", "doc_type":"usermanual", "kw":"Error Message \"Permission denied\" Displayed in Logs,Permission Issues,User Guide", @@ -6226,10 +10193,9 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Error Message \"Permission denied\" Displayed in Logs", @@ -6237,9 +10203,9 @@ }, { "uri":"modelarts_13_0079.html", - "node_id":"modelarts_13_0079.xml", + "node_id":"en-us_topic_0000001910008796.xml", "product_code":"modelarts", - "code":"305", + "code":"515", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"GPU Issues", @@ -6247,10 +10213,9 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"GPU Issues", @@ -6258,9 +10223,9 @@ }, { "uri":"modelarts_trouble_0032.html", - "node_id":"modelarts_trouble_0032.xml", + "node_id":"en-us_topic_0000001909848608.xml", "product_code":"modelarts", - "code":"306", + "code":"516", "des":"An error similar to the following occurs during the running of the program:1. 'failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected'\n2. 'No CU", "doc_type":"usermanual", "kw":"Error Message \"No CUDA-capable device is detected\" Displayed in Logs,GPU Issues,User Guide", @@ -6268,10 +10233,9 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Error Message \"No CUDA-capable device is detected\" Displayed in Logs", @@ -6279,20 +10243,19 @@ }, { "uri":"modelarts_trouble_0043.html", - "node_id":"modelarts_trouble_0043.xml", + "node_id":"en-us_topic_0000001943967921.xml", "product_code":"modelarts", - "code":"307", - "des":"When PyTorch was used for distributed training, the following error occurred.The possible causes are as follows:If data had been copied before this issue occurred, data r", + "code":"517", + "des":"When PyTorch is used for distributed training, the following error occurs.If data is copied before this issue occurs, data copy on all nodes is not complete at the same t", "doc_type":"usermanual", "kw":"Error Message \"RuntimeError: connect() timed out\" Displayed in Logs,GPU Issues,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Error Message \"RuntimeError: connect() timed out\" Displayed in Logs", @@ -6300,20 +10263,19 @@ }, { "uri":"modelarts_trouble_0049.html", - "node_id":"modelarts_trouble_0049.xml", + "node_id":"en-us_topic_0000001910008644.xml", "product_code":"modelarts", - "code":"308", - "des":"A training job failed, and the following error was printed in logs.The possible causes are as follows:The CUDA_VISIBLE_DEVICES setting does not comply with job specificat", + "code":"518", + "des":"A training job failed, and the following error is displayed in logs.The possible causes are as follows:The CUDA_VISIBLE_DEVICES setting does not comply with job specifica", "doc_type":"usermanual", "kw":"Error Message \"cuda runtime error (10) : invalid device ordinal at xxx\" Displayed in Logs,GPU Issues", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Error Message \"cuda runtime error (10) : invalid device ordinal at xxx\" Displayed in Logs", @@ -6321,20 +10283,19 @@ }, { "uri":"modelarts_trouble_0051.html", - "node_id":"modelarts_trouble_0051.xml", + "node_id":"en-us_topic_0000001909848668.xml", "product_code":"modelarts", - "code":"309", - "des":"When PyTorch was used to start multiple processes, the following error message was displayed:RuntimeError: Cannot re-initialize CUDA in forked subprocessThe possible caus", + "code":"519", + "des":"When PyTorch is used to start multiple processes, the following error message is displayed:RuntimeError: Cannot re-initialize CUDA in forked subprocessThe multi-processin", "doc_type":"usermanual", "kw":"Error Message \"RuntimeError: Cannot re-initialize CUDA in forked subprocess\" Displayed in Logs,GPU I", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Error Message \"RuntimeError: Cannot re-initialize CUDA in forked subprocess\" Displayed in Logs", @@ -6342,30 +10303,29 @@ }, { "uri":"modelarts_13_0033.html", - "node_id":"modelarts_13_0033.xml", + "node_id":"en-us_topic_0000001909848800.xml", "product_code":"modelarts", - "code":"310", + "code":"520", "des":"The following error message is displayed during the running of a ModelArts training job:According to error information, the error cause is that the training job running p", "doc_type":"usermanual", - "kw":"No GPU Detected in a Training Job,GPU Issues,User Guide", + "kw":"No GPU Is Found for a Training Job,GPU Issues,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"No GPU Detected in a Training Job", + "title":"No GPU Is Found for a Training Job", "githuburl":"" }, { "uri":"modelarts_13_0073.html", - "node_id":"modelarts_13_0073.xml", + "node_id":"en-us_topic_0000001943968009.xml", "product_code":"modelarts", - "code":"311", + "code":"521", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Service Code Issues", @@ -6373,10 +10333,9 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Service Code Issues", @@ -6384,20 +10343,19 @@ }, { "uri":"modelarts_trouble_0050.html", - "node_id":"modelarts_trouble_0050.xml", + "node_id":"en-us_topic_0000001910008672.xml", "product_code":"modelarts", - "code":"312", - "des":"When Pandas was used to read CSV data, the following error was printed in logs, and the training job failed:pandas.errors.ParserError: Error tokenizing data. C error: Exp", + "code":"522", + "des":"When pandas is used to read CSV data, the following error is displayed in logs, and the training job failed:pandas.errors.ParserError: Error tokenizing data. C error: Exp", "doc_type":"usermanual", "kw":"Error Message \"pandas.errors.ParserError: Error tokenizing data. C error: Expected .* fields\" Displa", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Error Message \"pandas.errors.ParserError: Error tokenizing data. C error: Expected .* fields\" Displayed in Logs", @@ -6405,51 +10363,29 @@ }, { "uri":"modelarts_trouble_0037.html", - "node_id":"modelarts_trouble_0037.xml", + "node_id":"en-us_topic_0000001943967753.xml", "product_code":"modelarts", - "code":"313", - "des":"After PyTorch 1.3 was upgraded to 1.4, the following error message was displayed:\"RuntimeError:max_pool2d_with_indices_out_cuda_frame failed with error code 0\"The possibl", + "code":"523", + "des":"After PyTorch 1.3 is upgraded to 1.4, the following error message is displayed:\"RuntimeError:max_pool2d_with_indices_out_cuda_frame failed with error code 0\"The PyTorch 1", "doc_type":"usermanual", "kw":"Error Message \"max_pool2d_with_indices_out_cuda_frame failed with error code 0\" Displayed in Logs,Se", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Error Message \"max_pool2d_with_indices_out_cuda_frame failed with error code 0\" Displayed in Logs", "githuburl":"" }, - { - "uri":"modelarts_trouble_0039.html", - "node_id":"modelarts_trouble_0039.xml", - "product_code":"modelarts", - "code":"314", - "des":"The training job failed, and error code 139 is returned.The possible causes are as follows:Certain pip packages in the pip source have been updated, leading to data incom", - "doc_type":"usermanual", - "kw":"Training Job Failed with Error Code 139,Service Code Issues,User Guide", - "search_title":"", - "metedata":[ - { - "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" - } - ], - "title":"Training Job Failed with Error Code 139", - "githuburl":"" - }, { "uri":"modelarts_trouble_0057.html", - "node_id":"modelarts_trouble_0057.xml", + "node_id":"en-us_topic_0000001943967713.xml", "product_code":"modelarts", - "code":"315", + "code":"524", "des":"Before creating a training job, use the ModelArts development environment to debug the training code to maximally eliminate errors in code migration.", "doc_type":"usermanual", "kw":"Debugging Training Code in the Cloud Environment If a Training Job Failed,Service Code Issues,User G", @@ -6457,10 +10393,9 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Debugging Training Code in the Cloud Environment If a Training Job Failed", @@ -6468,20 +10403,19 @@ }, { "uri":"modelarts_trouble_0059.html", - "node_id":"modelarts_trouble_0059.xml", + "node_id":"en-us_topic_0000001910008668.xml", "product_code":"modelarts", - "code":"316", - "des":"The following error message was displayed during training:TypeError: '(slice(0, 13184, None), slice(None, None, None))' is an invalid keyThe possible causes are as follow", + "code":"525", + "des":"The following error message is displayed during training:TypeError: '(slice(0, 13184, None), slice(None, None, None))' is an invalid keyThe data selected for segmentation", "doc_type":"usermanual", "kw":"Error Message \"'(slice(0, 13184, None), slice(None, None, None))' is an invalid key\" Displayed in Lo", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Error Message \"'(slice(0, 13184, None), slice(None, None, None))' is an invalid key\" Displayed in Logs", @@ -6489,20 +10423,19 @@ }, { "uri":"modelarts_trouble_0058.html", - "node_id":"modelarts_trouble_0058.xml", + "node_id":"en-us_topic_0000001909848484.xml", "product_code":"modelarts", - "code":"317", - "des":"The following error message was displayed during training:DataFrame.dtypes for data must be int, float or boolThe possible causes are as follows:The training data is not ", + "code":"526", + "des":"The following error message is displayed during training:DataFrame.dtypes for data must be int, float or boolThe training data is not of the int, float, or bool type.Run ", "doc_type":"usermanual", "kw":"Error Message \"DataFrame.dtypes for data must be int, float or bool\" Displayed in Logs,Service Code ", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Error Message \"DataFrame.dtypes for data must be int, float or bool\" Displayed in Logs", @@ -6510,41 +10443,39 @@ }, { "uri":"modelarts_trouble_0056.html", - "node_id":"modelarts_trouble_0056.xml", + "node_id":"en-us_topic_0000001909848656.xml", "product_code":"modelarts", - "code":"318", - "des":"The following error message was displayed during PyTorch training:RuntimeError: cuDNN error: CUDNN_STATUS_NOT_SUPPORTED. This error may appear if you passed in a non-cont", + "code":"527", + "des":"The following error message is displayed during PyTorch training:RuntimeError: cuDNN error: CUDNN_STATUS_NOT_SUPPORTED. This error may appear if you passed in a non-conti", "doc_type":"usermanual", - "kw":"Error Message \"CUDNN_STATUS_NOT_SUPPORTED.\" Is Printed in Logs,Service Code Issues,User Guide", + "kw":"Error Message \"CUDNN_STATUS_NOT_SUPPORTED\" Displayed in Logs,Service Code Issues,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Error Message \"CUDNN_STATUS_NOT_SUPPORTED.\" Is Printed in Logs", + "title":"Error Message \"CUDNN_STATUS_NOT_SUPPORTED\" Displayed in Logs", "githuburl":"" }, { "uri":"modelarts_trouble_0053.html", - "node_id":"modelarts_trouble_0053.xml", + "node_id":"en-us_topic_0000001943967689.xml", "product_code":"modelarts", - "code":"319", - "des":"When pandas.to_datetime was used to convert time, the following error message was displayed:pandas._libs.tslibs.np_datetime.OutOfBoundsDatetime: Out of bounds nanosecond ", + "code":"528", + "des":"When pandas.to_datetime is used to convert time, the following error message is displayed:pandas._libs.tslibs.np_datetime.OutOfBoundsDatetime: Out of bounds nanosecond ti", "doc_type":"usermanual", "kw":"Error Message \"Out of bounds nanosecond timestamp\" Displayed in Logs,Service Code Issues,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Error Message \"Out of bounds nanosecond timestamp\" Displayed in Logs", @@ -6552,20 +10483,19 @@ }, { "uri":"modelarts_trouble_0055.html", - "node_id":"modelarts_trouble_0055.xml", + "node_id":"en-us_topic_0000001910008660.xml", "product_code":"modelarts", - "code":"320", - "des":"After Keras was upgraded to 2.3.0 or later, the following error message was displayed:TypeError: Unexpected keyword argument passed to optimizer: learning_rateThe possibl", + "code":"529", + "des":"After Keras is upgraded to 2.3.0 or later, the following error message is displayed:TypeError: Unexpected keyword argument passed to optimizer: learning_rateCertain param", "doc_type":"usermanual", "kw":"Error Message \"Unexpected keyword argument passed to optimizer\" Displayed in Logs,Service Code Issue", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Error Message \"Unexpected keyword argument passed to optimizer\" Displayed in Logs", @@ -6573,93 +10503,149 @@ }, { "uri":"modelarts_trouble_0038.html", - "node_id":"modelarts_trouble_0038.xml", + "node_id":"en-us_topic_0000001910012920.xml", "product_code":"modelarts", - "code":"321", - "des":"An NCCL debug log level is set in a distributed job executed using a PyTorch image.import os\nos.environ[\"NCCL_DEBUG\"] = \"INFO\"The following error message was displayed.Th", + "code":"530", + "des":"An NCCL debug log level is set in a distributed job executed using a PyTorch image.import os\nos.environ[\"NCCL_DEBUG\"] = \"INFO\"The following error message is displayed.The", "doc_type":"usermanual", "kw":"Error Message \"no socket interface found\" Displayed in Logs,Service Code Issues,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Error Message \"no socket interface found\" Displayed in Logs", "githuburl":"" }, { - "uri":"modelarts_13_0016.html", - "node_id":"modelarts_13_0016.xml", + "uri":"modelarts_trouble_0060.html", + "node_id":"en-us_topic_0000001943967853.xml", "product_code":"modelarts", - "code":"322", - "des":"The following error occurs when tf.variable is used across multiple machines and multiple GPUs: WARNING:tensorflow:Gradient is None for variable:v0/tower_0/UNET_v7/sub_pi", + "code":"531", + "des":"During the running of a training job, error message \"Runtimeerror: Dataloader worker (pid 46212) is killed by signal: Killed BP\" is displayed in logs.The Dataloader proce", "doc_type":"usermanual", - "kw":"tf.variable Unavailable for Distributed TensorFlow,Service Code Issues,User Guide", + "kw":"Error Message \"Runtimeerror: Dataloader worker (pid 46212) is killed by signal: Killed BP\" Displayed", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"tf.variable Unavailable for Distributed TensorFlow", + "title":"Error Message \"Runtimeerror: Dataloader worker (pid 46212) is killed by signal: Killed BP\" Displayed in Logs", + "githuburl":"" + }, + { + "uri":"modelarts_trouble_0063.html", + "node_id":"en-us_topic_0000001909848768.xml", + "product_code":"modelarts", + "code":"532", + "des":"Code can run properly in the notebook Keras image. When tensorflow.keras is used for training, error message \"AttributeError: 'NoneType' object has no attribute 'dtype'\" ", + "doc_type":"usermanual", + "kw":"Error Message \"AttributeError: 'NoneType' object has no attribute 'dtype'\" Displayed in Logs,Service", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Error Message \"AttributeError: 'NoneType' object has no attribute 'dtype'\" Displayed in Logs", + "githuburl":"" + }, + { + "uri":"modelarts_trouble_0064.html", + "node_id":"en-us_topic_0000001909848816.xml", + "product_code":"modelarts", + "code":"533", + "des":"After the configuration file of the Tacotron 2 model downloaded from the master branch of MindSpore open-source Gitee is modified and then uploaded to ModelArts for train", + "doc_type":"usermanual", + "kw":"Error Message \"No module name 'unidecode'\" Displayed in Logs,Service Code Issues,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Error Message \"No module name 'unidecode'\" Displayed in Logs", + "githuburl":"" + }, + { + "uri":"modelarts_13_0016.html", + "node_id":"en-us_topic_0000001909848820.xml", + "product_code":"modelarts", + "code":"534", + "des":"The following error occurs when tf.variable is used across multiple machines and multiple GPUs: WARNING:tensorflow:Gradient is None for variable:v0/tower_0/UNET_v7/sub_pi", + "doc_type":"usermanual", + "kw":"Distributed Tensorflow Cannot Use tf.variable,Service Code Issues,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Distributed Tensorflow Cannot Use tf.variable", "githuburl":"" }, { "uri":"modelarts_13_0026.html", - "node_id":"modelarts_13_0026.xml", + "node_id":"en-us_topic_0000001910008548.xml", "product_code":"modelarts", - "code":"323", + "code":"535", "des":"When kv_store = mxnet.kv.create('dist_async') is used to create kvstore, the program is blocked. For example, run the following code. If end is not displayed, the program", "doc_type":"usermanual", - "kw":"Creating a KVStore Using MXNet Blocked and No Error Reported,Service Code Issues,User Guide", + "kw":"When MXNet Creates kvstore, the Program Is Blocked and No Error Is Reported,Service Code Issues,User", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Creating a KVStore Using MXNet Blocked and No Error Reported", + "title":"When MXNet Creates kvstore, the Program Is Blocked and No Error Is Reported", "githuburl":"" }, { "uri":"modelarts_13_0028.html", - "node_id":"modelarts_13_0028.xml", + "node_id":"en-us_topic_0000001909848796.xml", "product_code":"modelarts", - "code":"324", + "code":"536", "des":"The following error occurs during the running of the training job log: RuntimeError: CUDA error: uncorrectable ECC error encounteredIf a job fails to be executed due to a", "doc_type":"usermanual", - "kw":"Training Job Failed Due to an ECC Error,Service Code Issues,User Guide", + "kw":"ECC Error Occurs in the Log, Causing Training Job Failure,Service Code Issues,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Training Job Failed Due to an ECC Error", + "title":"ECC Error Occurs in the Log, Causing Training Job Failure", "githuburl":"" }, { "uri":"modelarts_13_0034.html", - "node_id":"modelarts_13_0034.xml", + "node_id":"en-us_topic_0000001909848488.xml", "product_code":"modelarts", - "code":"325", + "code":"537", "des":"An error occurs for a ModelArts training job.The training failed because the recursion depth exceeded the default recursion depth of Python.If the maximum recursion depth", "doc_type":"usermanual", "kw":"Training Job Failed Because the Maximum Recursion Depth Is Exceeded,Service Code Issues,User Guide", @@ -6667,10 +10653,9 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Training Job Failed Because the Maximum Recursion Depth Is Exceeded", @@ -6678,9 +10663,9 @@ }, { "uri":"modelarts_13_0041.html", - "node_id":"modelarts_13_0041.xml", + "node_id":"en-us_topic_0000001909848552.xml", "product_code":"modelarts", - "code":"326", + "code":"538", "des":"When a training job is created using a built-in algorithm, the training failed with the following error message in the log:Non-rectangles are used for labeling training s", "doc_type":"usermanual", "kw":"Training Using a Built-in Algorithm Failed Due to a bndbox Error,Service Code Issues,User Guide", @@ -6688,10 +10673,9 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Training Using a Built-in Algorithm Failed Due to a bndbox Error", @@ -6699,41 +10683,39 @@ }, { "uri":"modelarts_13_0030.html", - "node_id":"modelarts_13_0030.xml", + "node_id":"en-us_topic_0000001943967877.xml", "product_code":"modelarts", - "code":"327", + "code":"539", "des":"When Algorithm Source is set to Custom during training job creation, the training job status is Reviewing Job Initialization.When a custom image is running for the first ", "doc_type":"usermanual", - "kw":"Training Job in \"Reviewing Job Initialization\" State,Service Code Issues,User Guide", + "kw":"Training Job Status Is Reviewing Job Initialization,Service Code Issues,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], - "title":"Training Job in \"Reviewing Job Initialization\" State", + "title":"Training Job Status Is Reviewing Job Initialization", "githuburl":"" }, { "uri":"modelarts_13_0074.html", - "node_id":"modelarts_13_0074.xml", + "node_id":"en-us_topic_0000001909848660.xml", "product_code":"modelarts", - "code":"328", - "des":"The training fails and the following error information is displayed in the log.According to the log, the exit code of the training job is 137. The training process starts", + "code":"540", + "des":"Running a training job failed, and error information similar to the following is displayed in logs:According to the log, the exit code of the training job is 137. The tra", "doc_type":"usermanual", "kw":"Training Job Process Exits Unexpectedly,Service Code Issues,User Guide", "search_title":"", "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Training Job Process Exits Unexpectedly", @@ -6741,9 +10723,9 @@ }, { "uri":"modelarts_13_0075.html", - "node_id":"modelarts_13_0075.xml", + "node_id":"en-us_topic_0000001943967685.xml", "product_code":"modelarts", - "code":"329", + "code":"541", "des":"The training job process is stopped and the logs are interrupted.CPU soft lockThe decompression of a large number of files may cause CPU soft lock and node restart. You c", "doc_type":"usermanual", "kw":"Stopped Training Job Process,Service Code Issues,User Guide", @@ -6751,20 +10733,819 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", - "documenttype":"usermanual", + "IsMulti":"Yes", "IsBot":"No", - "IsMulti":"No" + "documenttype":"usermanual" } ], "title":"Stopped Training Job Process", "githuburl":"" }, { - "uri":"modelarts_04_0099.html", - "node_id":"modelarts_04_0099.xml", + "uri":"modelarts_trouble_0109.html", + "node_id":"en-us_topic_0000001943968025.xml", "product_code":"modelarts", - "code":"330", + "code":"542", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Training Job Suspended", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Training Job Suspended", + "githuburl":"" + }, + { + "uri":"modelarts_trouble_0110.html", + "node_id":"en-us_topic_0000001909848616.xml", + "product_code":"modelarts", + "code":"543", + "des":"The system stops responding when mox.file.copy_parallel is called to copy data.Run the following commands to copy files or folders:import moxing as mox\nmox.file.set_auth(", + "doc_type":"usermanual", + "kw":"Suspension in Data Copy,Training Job Suspended,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Suspension in Data Copy", + "githuburl":"" + }, + { + "uri":"modelarts_trouble_0111.html", + "node_id":"en-us_topic_0000001943967961.xml", + "product_code":"modelarts", + "code":"544", + "des":"If a job is trained on multiple nodes and suspension occurs before the job starts, add os.environ[\"NCCL_DEBUG\"] = \"INFO\" to the code to view the NCCL debugging informatio", + "doc_type":"usermanual", + "kw":"Suspension Before Training,Training Job Suspended,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Suspension Before Training", + "githuburl":"" + }, + { + "uri":"modelarts_trouble_0112.html", + "node_id":"en-us_topic_0000001943967885.xml", + "product_code":"modelarts", + "code":"545", + "des":"According to the logs of the nodes on which a training job runs, an error occurred on a node but the job did not exit, leading to the job suspension.Check the error cause", + "doc_type":"usermanual", + "kw":"Suspension During Training,Training Job Suspended,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Suspension During Training", + "githuburl":"" + }, + { + "uri":"modelarts_trouble_0113.html", + "node_id":"en-us_topic_0000001943967953.xml", + "product_code":"modelarts", + "code":"546", + "des":"Logs showed that an error occurred in split data. As a result, processes are in different epochs, and uncompleted processes are suspended because they do not receive resp", + "doc_type":"usermanual", + "kw":"Suspension in the Last Training Epoch,Training Job Suspended,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Suspension in the Last Training Epoch", + "githuburl":"" + }, + { + "uri":"modelarts_trouble_0131.html", + "node_id":"en-us_topic_0000001943967681.xml", + "product_code":"modelarts", + "code":"547", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Training Jobs Created in a Dedicated Resource Pool", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Training Jobs Created in a Dedicated Resource Pool", + "githuburl":"" + }, + { + "uri":"modelarts_trouble_0132.html", + "node_id":"en-us_topic_0000001943972149.xml", + "product_code":"modelarts", + "code":"548", + "des":"On the page for creating a training job, there is no option for the cloud storage and mount path.The network of the target dedicated resource pool is not connected, or no", + "doc_type":"usermanual", + "kw":"No Cloud Storage Name or Mount Path Displayed on the Page for Creating a Training Job,Training Jobs ", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"No Cloud Storage Name or Mount Path Displayed on the Page for Creating a Training Job", + "githuburl":"" + }, + { + "uri":"modelarts_13_0122.html", + "node_id":"en-us_topic_0000001909848652.xml", + "product_code":"modelarts", + "code":"549", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Inference Deployment", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Inference Deployment", + "githuburl":"" + }, + { + "uri":"modelarts_13_0203.html", + "node_id":"en-us_topic_0000001943968013.xml", + "product_code":"modelarts", + "code":"550", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"AI Application Management", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"AI Application Management", + "githuburl":"" + }, + { + "uri":"modelarts_13_0208.html", + "node_id":"en-us_topic_0000001943967657.xml", + "product_code":"modelarts", + "code":"551", + "des":"I used a base image to import AI applications through OBS and wrote some inference code for implementing the inference logic. After an error occurred, I attempted to use ", + "doc_type":"usermanual", + "kw":"Failed to Obtain Certain Logs on the ModelArts Log Query Page,AI Application Management,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Failed to Obtain Certain Logs on the ModelArts Log Query Page", + "githuburl":"" + }, + { + "uri":"modelarts_13_0210.html", + "node_id":"en-us_topic_0000001910008480.xml", + "product_code":"modelarts", + "code":"552", + "des":"When I used a custom image to create an AI application, the creation failed.Possible causes are as follows:The URL of the image used for importing the AI application is i", + "doc_type":"usermanual", + "kw":"Failed to Use a Custom Image to Create an AI application,AI Application Management,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Failed to Use a Custom Image to Create an AI application", + "githuburl":"" + }, + { + "uri":"modelarts_13_0211.html", + "node_id":"en-us_topic_0000001910008616.xml", + "product_code":"modelarts", + "code":"553", + "des":"When an imported AI application is used to deploy a service, the system displays a message indicating that the idle disk space is insufficient for service deployment.Mode", + "doc_type":"usermanual", + "kw":"Restrictions on the Size of an Image for Importing an AI Application,AI Application Management,User ", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Restrictions on the Size of an Image for Importing an AI Application", + "githuburl":"" + }, + { + "uri":"modelarts_13_0212.html", + "node_id":"en-us_topic_0000001910008544.xml", + "product_code":"modelarts", + "code":"554", + "des":"After an AI application is created, an error occurred when it is deployed as a service.When an AI application is imported using a custom or base image, many service logic", + "doc_type":"usermanual", + "kw":"Error Occurred When a Created AI Application Is Deployed as a Service,AI Application Management,User", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Error Occurred When a Created AI Application Is Deployed as a Service", + "githuburl":"" + }, + { + "uri":"modelarts_13_0213.html", + "node_id":"en-us_topic_0000001909848640.xml", + "product_code":"modelarts", + "code":"555", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Service Deployment", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Service Deployment", + "githuburl":"" + }, + { + "uri":"modelarts_13_0062.html", + "node_id":"en-us_topic_0000001910008552.xml", + "product_code":"modelarts", + "code":"556", + "des":"A model fails to be deployed as a real-time service. On the real-time service details page, the message \"failed to pull image, retry later\" is displayed on the Events tab", + "doc_type":"usermanual", + "kw":"Error Occurred When a Custom Image Model Is Deployed as a Real-Time Service,Service Deployment,User ", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Error Occurred When a Custom Image Model Is Deployed as a Real-Time Service", + "githuburl":"" + }, + { + "uri":"modelarts_13_0065.html", + "node_id":"en-us_topic_0000001943967965.xml", + "product_code":"modelarts", + "code":"557", + "des":"A deployed real-time service is in the Alarm state.The prediction using a real-time service that is in the Alarm state may fail. Perform the following operations to locat", + "doc_type":"usermanual", + "kw":"Alarm Status of a Deployed Real-Time Service,Service Deployment,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Alarm Status of a Deployed Real-Time Service", + "githuburl":"" + }, + { + "uri":"modelarts_05_3187.html", + "node_id":"en-us_topic_0000001909848748.xml", + "product_code":"modelarts", + "code":"558", + "des":"A service retains in the Deploying state. No obvious error is found in AI application logs.The AI application port is typically incorrect. Check whether the port for crea", + "doc_type":"usermanual", + "kw":"Service Is Consistently Being Deployed,Service Deployment,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Service Is Consistently Being Deployed", + "githuburl":"" + }, + { + "uri":"modelarts_05_3188.html", + "node_id":"en-us_topic_0000001943967757.xml", + "product_code":"modelarts", + "code":"559", + "des":"The traffic for prediction is not heavy, but the following error frequently occurs:Backend service internal error. Backend service read timed outSend the request from gat", + "doc_type":"usermanual", + "kw":"A Started Service Is Intermittently in the Alarm State,Service Deployment,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"A Started Service Is Intermittently in the Alarm State", + "githuburl":"" + }, + { + "uri":"modelarts_05_3189.html", + "node_id":"en-us_topic_0000001910008600.xml", + "product_code":"modelarts", + "code":"560", + "des":"Deploying a service failed. The system displays error message \"No Module named XXX\".\"No Module named XXX\" indicates that the dependency module is not imported to the mode", + "doc_type":"usermanual", + "kw":"Failed to Deploy a Service and Error \"No Module named XXX\" Occurred,Service Deployment,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Failed to Deploy a Service and Error \"No Module named XXX\" Occurred", + "githuburl":"" + }, + { + "uri":"modelarts_13_0251.html", + "node_id":"en-us_topic_0000001909848764.xml", + "product_code":"modelarts", + "code":"561", + "des":"An input/output path is unavailable, and the following error message is displayed:\"error_code\": \"ModelArts.3551\",\n\"error_msg\": \"OBS path xxxx does not exist.\"When the acc", + "doc_type":"usermanual", + "kw":"Insufficient Permission to or Unavailable Input/Output OBS Path of a Batch Service,Service Deploymen", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Insufficient Permission to or Unavailable Input/Output OBS Path of a Batch Service", + "githuburl":"" + }, + { + "uri":"modelarts_13_0215.html", + "node_id":"en-us_topic_0000001943967773.xml", + "product_code":"modelarts", + "code":"562", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"Service Prediction", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Service Prediction", + "githuburl":"" + }, + { + "uri":"modelarts_13_0216.html", + "node_id":"en-us_topic_0000001943967837.xml", + "product_code":"modelarts", + "code":"563", + "des":"After a real-time service is deployed and running, an inference request is sent to the service, but the inference failed.Service prediction involves multiple phases, incl", + "doc_type":"usermanual", + "kw":"Service Prediction Failed,Service Prediction,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Service Prediction Failed", + "githuburl":"" + }, + { + "uri":"modelarts_05_3204.html", + "node_id":"en-us_topic_0000001910008476.xml", + "product_code":"modelarts", + "code":"564", + "des":"A request is intercepted on API Gateway due to a fault, and error \"APIG.XXXX\" occurs.Rectify the fault by referring to the methods provided in the following typical cases", + "doc_type":"usermanual", + "kw":"Error \"APIG.XXXX\" Occurred in a Prediction Failure,Service Prediction,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Error \"APIG.XXXX\" Occurred in a Prediction Failure", + "githuburl":"" + }, + { + "uri":"modelarts_13_0217.html", + "node_id":"en-us_topic_0000001910008556.xml", + "product_code":"modelarts", + "code":"565", + "des":"After a real-time service is deployed and running, an inference request is sent to the service, but error ModelArts.4206 occurred.ModelArts.4206 indicates that the reques", + "doc_type":"usermanual", + "kw":"Error ModelArts.4206 Occurred in Real-Time Service Prediction,Service Prediction,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Error ModelArts.4206 Occurred in Real-Time Service Prediction", + "githuburl":"" + }, + { + "uri":"modelarts_13_0218.html", + "node_id":"en-us_topic_0000001943967913.xml", + "product_code":"modelarts", + "code":"566", + "des":"After a real-time service is deployed and running, an inference request is sent to the service, but error ModelArts.4302 occurred.Error ModelArts.4302 may occur in multip", + "doc_type":"usermanual", + "kw":"Error ModelArts.4302 Occurred in Real-Time Service Prediction,Service Prediction,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Error ModelArts.4302 Occurred in Real-Time Service Prediction", + "githuburl":"" + }, + { + "uri":"modelarts_13_0219.html", + "node_id":"en-us_topic_0000001943967813.xml", + "product_code":"modelarts", + "code":"567", + "des":"After a real-time service is deployed and running, an inference request is sent to the service, but error ModelArts.4503 occurred.Error ModelArts.4503 may occur in multip", + "doc_type":"usermanual", + "kw":"Error ModelArts.4503 Occurred in Real-Time Service Prediction,Service Prediction,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Error ModelArts.4503 Occurred in Real-Time Service Prediction", + "githuburl":"" + }, + { + "uri":"modelarts_13_0192.html", + "node_id":"en-us_topic_0000001910008536.xml", + "product_code":"modelarts", + "code":"568", + "des":"During the prediction in a running real-time service, error { \"erno\": \"MR.0105\", \"msg\": \"Recognition failed\",\"words_result\": {}} occurred.Locate the fault by analyzing th", + "doc_type":"usermanual", + "kw":"Error MR.0105 Occurred in Real-Time Service Prediction,Service Prediction,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Error MR.0105 Occurred in Real-Time Service Prediction", + "githuburl":"" + }, + { + "uri":"modelarts_13_0220.html", + "node_id":"en-us_topic_0000001909848620.xml", + "product_code":"modelarts", + "code":"569", + "des":"Error message \"Method Not Allowed\" is displayed during service prediction.The APIs registered by default for service prediction must be called using POST. If you use GET,", + "doc_type":"usermanual", + "kw":"Method Not Allowed,Service Prediction,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Method Not Allowed", + "githuburl":"" + }, + { + "uri":"modelarts_13_0221.html", + "node_id":"en-us_topic_0000001943967661.xml", + "product_code":"modelarts", + "code":"570", + "des":"A service prediction request timed out.If a request times out, there is a high probability that the request is intercepted by API Gateway. Check the API Gateway and model", + "doc_type":"usermanual", + "kw":"Request Timed Out,Service Prediction,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Request Timed Out", + "githuburl":"" + }, + { + "uri":"modelarts_05_3186.html", + "node_id":"en-us_topic_0000001909848692.xml", + "product_code":"modelarts", + "code":"571", + "des":"If an error occurs when an API is called for service deployment, check the following items:Check whether POST is used in the configuration file for the model API.Check wh", + "doc_type":"usermanual", + "kw":"Error Occurred When an API Is Called for Deploying a Model Created Using a Custom Image,Service Pred", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Error Occurred When an API Is Called for Deploying a Model Created Using a Custom Image", + "githuburl":"" + }, + { + "uri":"modelarts_13_0035.html", + "node_id":"en-us_topic_0000001910008816.xml", + "product_code":"modelarts", + "code":"572", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"MoXing", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"MoXing", + "githuburl":"" + }, + { + "uri":"modelarts_13_0036.html", + "node_id":"en-us_topic_0000001910008588.xml", + "product_code":"modelarts", + "code":"573", + "des":"Call moxing.file.copy_parallel() to copy a file from the development environment to a bucket. However, the target file does not appear in the bucket.An error occurs when ", + "doc_type":"usermanual", + "kw":"Error Occurs When MoXing Is Used to Copy Data,MoXing,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Error Occurs When MoXing Is Used to Copy Data", + "githuburl":"" + }, + { + "uri":"modelarts_13_0024.html", + "node_id":"en-us_topic_0000001910008812.xml", + "product_code":"modelarts", + "code":"574", + "des":"When the TensorFlow version of the training job Mox is running, 50 steps are executed for four times before the job is formally running.Warmup indicates a process of usin", + "doc_type":"usermanual", + "kw":"How Do I Disable the Warmup Function of the Mox?,MoXing,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"How Do I Disable the Warmup Function of the Mox?", + "githuburl":"" + }, + { + "uri":"modelarts_13_0010.html", + "node_id":"en-us_topic_0000001943967889.xml", + "product_code":"modelarts", + "code":"575", + "des":"The Pytorch engine of a frequently-used framework is used as an algorithm source of a ModelArts training job. During the running of the training job, Mox versions for eac", + "doc_type":"usermanual", + "kw":"Pytorch Mox Logs Are Repeatedly Generated,MoXing,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Pytorch Mox Logs Are Repeatedly Generated", + "githuburl":"" + }, + { + "uri":"modelarts_13_0027.html", + "node_id":"en-us_topic_0000001909848456.xml", + "product_code":"modelarts", + "code":"576", + "des":"When MoXing is used to train a model, global_step is placed in the Adam name range. The non-MoXing code does not contain the Adam name range. See Figure 1. In the figure,", + "doc_type":"usermanual", + "kw":"Does moxing.tensorflow Contain the Entire TensorFlow? How Do I Perform Local Fine Tune on the Genera", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Does moxing.tensorflow Contain the Entire TensorFlow? How Do I Perform Local Fine Tune on the Generated Checkpoint?", + "githuburl":"" + }, + { + "uri":"modelarts_13_0037.html", + "node_id":"en-us_topic_0000001943968021.xml", + "product_code":"modelarts", + "code":"577", + "des":"Copying data using MoXing is slow in a ModelArts training job.The log INFO:root:Listing OBS is repeatedly printed.Repeated log printingThe possible causes for slow data c", + "doc_type":"usermanual", + "kw":"Copying Data Using MoXing Is Slow and the Log Is Repeatedly Printed in a Training Job,MoXing,User Gu", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Copying Data Using MoXing Is Slow and the Log Is Repeatedly Printed in a Training Job", + "githuburl":"" + }, + { + "uri":"modelarts_13_0038.html", + "node_id":"en-us_topic_0000001910008572.xml", + "product_code":"modelarts", + "code":"578", + "des":"The folder cannot be accessed using MoXing.The folder size read by using get_size of MoXing is 0.To use MoXing to access a folder, you need to add the recursive=True para", + "doc_type":"usermanual", + "kw":"Failed to Access a Folder Using MoXing and Read the Folder Size Using get_size,MoXing,User Guide", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Failed to Access a Folder Using MoXing and Read the Folder Size Using get_size", + "githuburl":"" + }, + { + "uri":"modelarts_13_0197.html", + "node_id":"en-us_topic_0000001943967993.xml", + "product_code":"modelarts", + "code":"579", + "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "doc_type":"usermanual", + "kw":"APIs or SDKs", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"APIs or SDKs", + "githuburl":"" + }, + { + "uri":"modelarts_13_0198.html", + "node_id":"en-us_topic_0000001910008652.xml", + "product_code":"modelarts", + "code":"580", + "des":"When ModelArts SDKs are installed, the following error message is displayed: \"ERROR: Could not install packages due to an OSError: [WinError 2] The system cannot find the", + "doc_type":"usermanual", + "kw":"\"ERROR: Could not install packages due to an OSError\" Occurred During ModelArts SDK Installation,API", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"\"ERROR: Could not install packages due to an OSError\" Occurred During ModelArts SDK Installation", + "githuburl":"" + }, + { + "uri":"modelarts_13_0199.html", + "node_id":"en-us_topic_0000001943967789.xml", + "product_code":"modelarts", + "code":"581", + "des":"A ModelArts SDK was used to download a file from OBS, and the target path was set to the file name. No error was reported in the local IDE, but an error occurred when the", + "doc_type":"usermanual", + "kw":"Error Occurred During Service Deployment After the Target Path to a File Downloaded Through a ModelA", + "search_title":"", + "metedata":[ + { + "prodname":"modelarts", + "IsMulti":"Yes", + "IsBot":"No", + "documenttype":"usermanual" + } + ], + "title":"Error Occurred During Service Deployment After the Target Path to a File Downloaded Through a ModelArts SDK Is Set to a File Name", + "githuburl":"" + }, + { + "uri":"modelarts_77_0156.html", + "node_id":"en-us_topic_0000001943969833.xml", + "product_code":"modelarts", + "code":"582", "des":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "doc_type":"usermanual", "kw":"Change History,User Guide", @@ -6772,10 +11553,8 @@ "metedata":[ { "prodname":"modelarts", - "opensource":"true", "documenttype":"usermanual", - "IsBot":"No", - "IsMulti":"No" + "IsBot":"No" } ], "title":"Change History", diff --git a/docs/modelarts/umn/CLASS.TXT.json b/docs/modelarts/umn/CLASS.TXT.json index bc27d6b6..f1b9d3f1 100644 --- a/docs/modelarts/umn/CLASS.TXT.json +++ b/docs/modelarts/umn/CLASS.TXT.json @@ -3,7 +3,7 @@ "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", "title":"Service Overview", - "uri":"modelarts_01_0000.html", + "uri":"modelarts_77_0142.html", "doc_type":"usermanual", "p_code":"", "code":"1" @@ -63,7 +63,7 @@ "code":"7" }, { - "desc":"During AI development, massive volumes of data need to be processed, and data preparation and labeling usually take more than half of the development time. ModelArts data", + "desc":"During AI development, massive volumes of data need to be processed, and data preparing and labeling usually take more than half of the time required for the entire devel", "product_code":"modelarts", "title":"Data Management", "uri":"modelarts_01_0012.html", @@ -71,23 +71,14 @@ "p_code":"4", "code":"8" }, - { - "desc":"It is challenging to set up a development environment, select an AI algorithm framework and algorithm, debug code, install software, and accelerate hardware. To help user", - "product_code":"modelarts", - "title":"DevEnviron (Old Version)", - "uri":"modelarts_01_0013-.html", - "doc_type":"usermanual", - "p_code":"4", - "code":"9" - }, { "desc":"This document describes the DevEnviron notebook functions of the new version.Software development is a process of reducing developer costs and improving development exper", "product_code":"modelarts", "title":"Introduction to Development Tools", - "uri":"modelarts_01_0013.html", + "uri":"modelarts_01_0028.html", "doc_type":"usermanual", "p_code":"4", - "code":"10" + "code":"9" }, { "desc":"In addition to data and algorithms, developers spend a lot of time configuring model training parameters. Model training parameters determine the model's precision and co", @@ -96,34 +87,34 @@ "uri":"modelarts_01_0014.html", "doc_type":"usermanual", "p_code":"4", - "code":"11" + "code":"10" }, { - "desc":"Generally, AI model deployment and large-scale implementation are complex.The real-time inference service features high concurrency, low latency, and elastic scaling, and", + "desc":"ModelArts is capable of managing models and services. This allows mainstream framework images and models from multiple vendors to be managed in a unified manner.Generally", "product_code":"modelarts", "title":"Model Deployment", "uri":"modelarts_01_0015.html", "doc_type":"usermanual", "p_code":"4", - "code":"12" + "code":"11" }, { "desc":"To implement AI in various industries, AI model development must be simplified. Currently, only a few algorithm engineers and researchers are capable of AI development an", "product_code":"modelarts", "title":"ExeML", - "uri":"modelarts_01_0020.html", + "uri":"modelarts_01_0016.html", "doc_type":"usermanual", "p_code":"4", - "code":"13" + "code":"12" }, { - "desc":"ModelArts uses Object Storage Service (OBS) to securely and reliably store data and models at low costs. For more details, see Object Storage Service Console Operation Gu", + "desc":"ModelArts uses Identity and Access Management (IAM) for authentication and authorization. For more information about IAM, see Identity and Access Management User Guide.Mo", "product_code":"modelarts", "title":"Related Services", "uri":"modelarts_01_0006.html", "doc_type":"usermanual", "p_code":"1", - "code":"14" + "code":"13" }, { "desc":"You can access ModelArts through the web-based management console or by using HTTPS-based application programming interfaces (APIs).Using the Management ConsoleModelArts ", @@ -132,52 +123,34 @@ "uri":"modelarts_01_0007.html", "doc_type":"usermanual", "p_code":"1", - "code":"15" - }, - { - "desc":"ModelArts is a one-stop AI development platform geared toward developers and data scientists of all skill levels. It enables you to rapidly build, train, and deploy model", - "product_code":"modelarts", - "title":"Billing", - "uri":"modelarts_01_0021.html", - "doc_type":"usermanual", - "p_code":"1", - "code":"16" + "code":"14" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", "title":"Preparations", - "uri":"modelarts_08_0000.html", + "uri":"modelarts_77_0143.html", "doc_type":"usermanual", "p_code":"", - "code":"17" + "code":"15" }, { - "desc":"Certain ModelArts functions require access to Object Storage Service (OBS), Software Repository for Container (SWR), and Intelligent EdgeFabric (IEF). Before using ModelA", + "desc":"Exposed ModelArts functions are controlled through IAM permissions. For example, if you as an IAM user need to create a training job on ModelArts, you must have the model", "product_code":"modelarts", "title":"Configuring Access Authorization (Global Configuration)", "uri":"modelarts_08_0007.html", "doc_type":"usermanual", - "p_code":"17", - "code":"18" + "p_code":"15", + "code":"16" }, { - "desc":"ModelArts uses OBS to store data, and backs up and takes snapshots for models, achieving secure, reliable storage at low costs. Before using ModelArts, create an OBS buck", + "desc":"ModelArts uses OBS to store data and model backups and snapshots, achieving secure, reliable, and low-cost storage. Before using ModelArts, create an OBS bucket and folde", "product_code":"modelarts", "title":"Creating an OBS Bucket", "uri":"modelarts_08_0003.html", "doc_type":"usermanual", - "p_code":"17", - "code":"19" - }, - { - "desc":"If the domain name of a region can be resolved through the public network, skip in this section. If the domain name of a region cannot be resolved through the public netw", - "product_code":"modelarts", - "title":"(Optional) Configuring Mapping Between Domain Names and IP Addresses", - "uri":"modelarts_08_0008.html", - "doc_type":"usermanual", - "p_code":"17", - "code":"20" + "p_code":"15", + "code":"17" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -186,7 +159,7 @@ "uri":"modelarts_21_0000.html", "doc_type":"usermanual", "p_code":"", - "code":"21" + "code":"18" }, { "desc":"ModelArts ExeML is a customized code-free model development tool that helps you start codeless AI application development with high flexibility. ExeML automates model des", @@ -194,8 +167,8 @@ "title":"Introduction to ExeML", "uri":"modelarts_21_0001.html", "doc_type":"usermanual", - "p_code":"21", - "code":"22" + "p_code":"18", + "code":"19" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -203,8 +176,8 @@ "title":"Image Classification", "uri":"modelarts_21_0002.html", "doc_type":"usermanual", - "p_code":"21", - "code":"23" + "p_code":"18", + "code":"20" }, { "desc":"Before using ModelArts ExeML to build a model, upload data to an OBS bucket.This operation uses the OBS console to upload data.Perform the following operations to import ", @@ -212,8 +185,8 @@ "title":"Preparing Data", "uri":"modelarts_21_0003.html", "doc_type":"usermanual", - "p_code":"23", - "code":"24" + "p_code":"20", + "code":"21" }, { "desc":"ModelArts ExeML supports image classification and object detection projects. You can create any of them based on your needs. Perform the following operations to create an", @@ -221,8 +194,8 @@ "title":"Creating a Project", "uri":"modelarts_21_0004.html", "doc_type":"usermanual", - "p_code":"23", - "code":"25" + "p_code":"20", + "code":"22" }, { "desc":"Model training requires a large number of labeled images. Therefore, before model training, add labels to the images that are not labeled. ModelArts allows you to add lab", @@ -230,8 +203,8 @@ "title":"Labeling Data", "uri":"modelarts_21_0005.html", "doc_type":"usermanual", - "p_code":"23", - "code":"26" + "p_code":"20", + "code":"23" }, { "desc":"After labeling the images, you can train a model. You can perform model training to obtain the required image classification model. Training images must be classified int", @@ -239,8 +212,8 @@ "title":"Training a Model", "uri":"modelarts_21_0006.html", "doc_type":"usermanual", - "p_code":"23", - "code":"27" + "p_code":"20", + "code":"24" }, { "desc":"You can deploy a model as a real-time service that provides a real-time test UI and monitoring capabilities. After model training is complete, you can deploy a version wi", @@ -248,8 +221,8 @@ "title":"Deploying a Model as a Service", "uri":"modelarts_21_0007.html", "doc_type":"usermanual", - "p_code":"23", - "code":"28" + "p_code":"20", + "code":"25" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -257,8 +230,8 @@ "title":"Object Detection", "uri":"modelarts_21_0008.html", "doc_type":"usermanual", - "p_code":"21", - "code":"29" + "p_code":"18", + "code":"26" }, { "desc":"Before using ModelArts ExeML to build a model, upload data to an OBS bucket.This operation uses the OBS console to upload data.Perform the following operations to import ", @@ -266,8 +239,8 @@ "title":"Preparing Data", "uri":"modelarts_21_0009.html", "doc_type":"usermanual", - "p_code":"29", - "code":"30" + "p_code":"26", + "code":"27" }, { "desc":"ModelArts ExeML supports image classification and object detection projects. You can create any of them based on your needs. Perform the following operations to create an", @@ -275,8 +248,8 @@ "title":"Creating a Project", "uri":"modelarts_21_0010.html", "doc_type":"usermanual", - "p_code":"29", - "code":"31" + "p_code":"26", + "code":"28" }, { "desc":"Before data labeling, consider how to design labels. The labels must correspond to the distinct characteristics of the detected images and are easy to identify (the detec", @@ -284,8 +257,8 @@ "title":"Labeling Data", "uri":"modelarts_21_0011.html", "doc_type":"usermanual", - "p_code":"29", - "code":"32" + "p_code":"26", + "code":"29" }, { "desc":"After labeling the images, perform auto training to obtain an appropriate model version.On the ExeML page, click the name of the project that is successfully created. The", @@ -293,8 +266,8 @@ "title":"Training a Model", "uri":"modelarts_21_0012.html", "doc_type":"usermanual", - "p_code":"29", - "code":"33" + "p_code":"26", + "code":"30" }, { "desc":"You can deploy a model as a real-time service that provides a real-time test UI and monitoring capabilities. After the model is trained, you can deploy a Completed versio", @@ -302,8 +275,8 @@ "title":"Deploying a Model as a Service", "uri":"modelarts_21_0013.html", "doc_type":"usermanual", - "p_code":"29", - "code":"34" + "p_code":"26", + "code":"31" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -311,8 +284,8 @@ "title":"Predictive Analytics", "uri":"modelarts_21_0014.html", "doc_type":"usermanual", - "p_code":"21", - "code":"35" + "p_code":"18", + "code":"32" }, { "desc":"Before using ModelArts to build a predictive analytics model, upload data to OBS.This operation uses the OBS client to upload data. For more information about how to crea", @@ -320,8 +293,8 @@ "title":"Preparing Data", "uri":"modelarts_21_0015.html", "doc_type":"usermanual", - "p_code":"35", - "code":"36" + "p_code":"32", + "code":"33" }, { "desc":"ModelArts ExeML supports image classification, and object detection projects. You can create any of them based on your needs. Perform the following operations to create a", @@ -329,8 +302,8 @@ "title":"Creating a Project", "uri":"modelarts_21_0016.html", "doc_type":"usermanual", - "p_code":"35", - "code":"37" + "p_code":"32", + "code":"34" }, { "desc":"After creating a predictive analytics project, select a label column and its data type. On the Label Data tab page, you can preview data and select the label column and i", @@ -338,8 +311,8 @@ "title":"Selecting a Label Column", "uri":"modelarts_21_0017.html", "doc_type":"usermanual", - "p_code":"35", - "code":"38" + "p_code":"32", + "code":"35" }, { "desc":"After the data is labeled, train a model for predictive analytics. You can publish the model as a real-time inference service.On the ExeML page, click the name of the pro", @@ -347,8 +320,8 @@ "title":"Training a Model", "uri":"modelarts_21_0018.html", "doc_type":"usermanual", - "p_code":"35", - "code":"39" + "p_code":"32", + "code":"36" }, { "desc":"You can deploy a model as a real-time service that provides a real-time test UI and monitoring capabilities. After the model is trained, you can deploy a Successful versi", @@ -356,8 +329,8 @@ "title":"Deploying a Model as a Service", "uri":"modelarts_21_0019.html", "doc_type":"usermanual", - "p_code":"35", - "code":"40" + "p_code":"32", + "code":"37" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -365,8 +338,8 @@ "title":"Tips", "uri":"modelarts_21_0030.html", "doc_type":"usermanual", - "p_code":"21", - "code":"41" + "p_code":"18", + "code":"38" }, { "desc":"When creating a project, select a training data path. This section describes how to quickly create an OBS bucket and folder when you select the training data path.On the ", @@ -374,8 +347,8 @@ "title":"How Do I Quickly Create an OBS Bucket and a Folder When Creating a Project?", "uri":"modelarts_21_0031.html", "doc_type":"usermanual", - "p_code":"41", - "code":"42" + "p_code":"38", + "code":"39" }, { "desc":"To add data for an existing project, perform the following operations. The operations described in this section apply only to object detection and image classification pr", @@ -383,8 +356,8 @@ "title":"How Do I View the Added Data in an ExeML Project?", "uri":"modelarts_21_0032.html", "doc_type":"usermanual", - "p_code":"41", - "code":"43" + "p_code":"38", + "code":"40" }, { "desc":"Each round of training generates a training version in an ExeML project. If a training result is unsatisfactory (for example, if the precision is not good enough), you ca", @@ -392,8 +365,8 @@ "title":"How Do I Perform Incremental Training in an ExeML Project?", "uri":"modelarts_21_0033.html", "doc_type":"usermanual", - "p_code":"41", - "code":"44" + "p_code":"38", + "code":"41" }, { "desc":"For an ExeML project, after the model training is complete, the generated model is automatically displayed on the AI Application Management > AI Applications page. The mo", @@ -401,215 +374,683 @@ "title":"Where Are Models Generated by ExeML Stored? What Other Operations Are Supported?", "uri":"modelarts_21_0034.html", "doc_type":"usermanual", - "p_code":"41", - "code":"45" + "p_code":"38", + "code":"42" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", "title":"Data Management", - "uri":"modelarts_23_0002.html", + "uri":"modelarts_77_0146.html", "doc_type":"usermanual", "p_code":"", + "code":"43" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Data Preparation and Analysis", + "uri":"modelarts_88_0146.html", + "doc_type":"usermanual", + "p_code":"43", + "code":"44" + }, + { + "desc":"The driving forces behind AI are computing power, algorithms, and data. Data quality affects model precision. Generally, a large amount of high-quality data is more likel", + "product_code":"modelarts", + "title":"Data Preparation", + "uri":"dataprepare-modelarts-0001.html", + "doc_type":"usermanual", + "p_code":"44", + "code":"45" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Creating a Dataset", + "uri":"dataprepare-modelarts-0004.html", + "doc_type":"usermanual", + "p_code":"44", "code":"46" }, { - "desc":"In ModelArts, you can import and label data on the Data Management page to prepare for model building. ModelArts uses datasets as the basis for model development or train", + "desc":"ModelArts supports the following types of datasets:Images: in .jpg, .png, .jpeg, or .bmp format for image classification, image segmentation, and object detectionAudio: i", "product_code":"modelarts", - "title":"Introduction to Data Management", - "uri":"modelarts_23_0003.html", + "title":"Dataset Overview", + "uri":"dataprepare-modelarts-0005.html", "doc_type":"usermanual", "p_code":"46", "code":"47" }, { - "desc":"To manage data using ModelArts, you need to create a dataset first. Then you can perform operations on the dataset, such as labeling data, importing data, and publishing ", + "desc":"Before using ModelArts to manage data, create a dataset. Then, you can perform operations on the dataset, such as labeling data, importing data, and publishing the datase", "product_code":"modelarts", "title":"Creating a Dataset", - "uri":"modelarts_23_0004.html", + "uri":"dataprepare-modelarts-0006.html", "doc_type":"usermanual", "p_code":"46", "code":"48" }, { - "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "desc":"The basic information of a created dataset can be modified to keep pace with service changes.A created dataset is available.Log in to the ModelArts management console. In", "product_code":"modelarts", - "title":"Labeling Data", - "uri":"modelarts_23_0010.html", + "title":"Modifying a Dataset", + "uri":"dataprepare-modelarts-0035.html", "doc_type":"usermanual", "p_code":"46", "code":"49" }, { - "desc":"Model training uses a large number of labeled images. Therefore, before the model training, add labels to the images that are not labeled. You can add labels to images by", + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", - "title":"Image Classification", - "uri":"modelarts_23_0011.html", + "title":"Importing Data", + "uri":"dataprepare-modelarts-0007.html", "doc_type":"usermanual", - "p_code":"49", + "p_code":"44", "code":"50" }, { - "desc":"Training a model uses a large number of labeled images. Therefore, label images before the model training. You can add labels to images by manual labeling or auto labelin", + "desc":"After a dataset is created, you can import more data. ModelArts allows you to import data from different data sources.Importing Data from OBSImporting Data from Local Fil", "product_code":"modelarts", - "title":"Object Detection", - "uri":"modelarts_23_0012.html", + "title":"Introduction to Data Importing", + "uri":"dataprepare-modelarts-0008.html", "doc_type":"usermanual", - "p_code":"49", + "p_code":"50", "code":"51" }, { - "desc":"Model training requires a large amount of labeled data. Therefore, before the model training, add labels to the files that are not labeled. In addition, you can modify, d", + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", - "title":"Text Classification", - "uri":"modelarts_23_0013.html", + "title":"Importing Data from OBS", + "uri":"dataprepare-modelarts-0010.html", "doc_type":"usermanual", - "p_code":"49", + "p_code":"50", "code":"52" }, { - "desc":"Named entity recognition assigns labels to named entities in text, such as time and locations. Before labeling, you need to understand the following:A label name can cont", + "desc":"You can import data from OBS through an OBS path or a manifest file.OBS path: indicates that the dataset to be imported has been stored in an OBS path. In this case, sele", "product_code":"modelarts", - "title":"Named Entity Recognition", - "uri":"modelarts_23_0014.html", + "title":"Introduction to Importing Data from OBS", + "uri":"dataprepare-modelarts-0011.html", "doc_type":"usermanual", - "p_code":"49", + "p_code":"52", "code":"53" }, { - "desc":"Triplet labeling is suitable for scenarios where structured information, such as subjects, predicates, and objects, needs to be labeled in statements. With this function,", + "desc":"You have created a dataset.You have stored the data to be imported in OBS. You have stored the manifest file in OBS.The OBS bucket and ModelArts are in the same region an", "product_code":"modelarts", - "title":"Text Triplet", - "uri":"modelarts_23_0211.html", + "title":"Importing Data from an OBS Path", + "uri":"dataprepare-modelarts-0012.html", "doc_type":"usermanual", - "p_code":"49", + "p_code":"52", "code":"54" }, { - "desc":"Model training requires a large amount of labeled data. Therefore, before the model training, label the unlabeled audio files. ModelArts enables you to label audio files ", + "desc":"When importing data from OBS, the data storage directory and file name must comply with the ModelArts specifications.Only the following labeling types of data can be impo", "product_code":"modelarts", - "title":"Sound Classification", - "uri":"modelarts_23_0015.html", + "title":"Specifications for Importing Data from an OBS Directory", + "uri":"dataprepare-modelarts-0013.html", "doc_type":"usermanual", - "p_code":"49", + "p_code":"52", "code":"55" }, { - "desc":"Model training requires a large amount of labeled data. Therefore, before the model training, label the unlabeled audio files. ModelArts enables you to label audio files ", + "desc":"You have created a dataset.You have stored the data to be imported in OBS. You have stored the manifest file in OBS.The OBS bucket and ModelArts are in the same region an", "product_code":"modelarts", - "title":"Speech Labeling", - "uri":"modelarts_23_0016.html", + "title":"Importing a Manifest File", + "uri":"dataprepare-modelarts-0014.html", "doc_type":"usermanual", - "p_code":"49", + "p_code":"52", "code":"56" }, { - "desc":"Model training requires a large amount of labeled data. Therefore, before the model training, label the unlabeled audio files. ModelArts enables you to label audio files.", + "desc":"The manifest file defines the mapping between labeled objects and content. The manifest file import mode means that the manifest file is used for dataset import. The mani", "product_code":"modelarts", - "title":"Speech Paragraph Labeling", - "uri":"modelarts_23_0017.html", + "title":"Specifications for Importing a Manifest File", + "uri":"dataprepare-modelarts-0015.html", "doc_type":"usermanual", - "p_code":"49", + "p_code":"52", "code":"57" }, { - "desc":"Model training requires a large amount of labeled video data. Therefore, before the model training, label the unlabeled video files. ModelArts enables you to label video ", + "desc":"You have created a dataset.You have created an OBS bucket. The OBS bucket and ModelArts are in the same region and you can operate the bucket.Both file and table data can", "product_code":"modelarts", - "title":"Video Labeling", - "uri":"modelarts_23_0282.html", + "title":"Importing Data from Local Files", + "uri":"dataprepare-modelarts-0019.html", "doc_type":"usermanual", - "p_code":"49", + "p_code":"50", "code":"58" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", - "title":"Importing Data", - "uri":"modelarts_23_0005.html", + "title":"Data Analysis and Preview", + "uri":"dataprepare-modelarts-0020.html", "doc_type":"usermanual", - "p_code":"46", + "p_code":"44", "code":"59" }, { - "desc":"After a dataset is created, you can directly synchronize data from the dataset. Alternatively, you can import more data by importing the dataset. Data can be imported fro", + "desc":"After data is collected and imported, the data cannot directly meet the training requirements. Process data during R&D to ensure data quality and prevent negative impact ", "product_code":"modelarts", - "title":"Import Operation", - "uri":"modelarts_23_0006.html", + "title":"Processing Data", + "uri":"dataprepare-modelarts-0021.html", "doc_type":"usermanual", "p_code":"59", "code":"60" }, { - "desc":"When a dataset is imported, the data storage directory and file name must comply with the ModelArts specifications if the data to be used is stored in OBS.Only the follow", + "desc":"To improve the precision of auto labeling algorithms, you can evenly label multiple classes. ModelArts provides built-in grouping algorithms. You can enable auto grouping", "product_code":"modelarts", - "title":"Specifications for Importing Data from an OBS Directory", - "uri":"modelarts_23_0008.html", + "title":"Auto Grouping", + "uri":"dataprepare-modelarts-0022.html", "doc_type":"usermanual", "p_code":"59", "code":"61" }, { - "desc":"The manifest file defines the mapping between labeling objects and content. The Manifest file import mode means that the manifest file is used for dataset import. The man", + "desc":"On the Dashboard tab page of the dataset, the summary of the dataset is displayed by default. In the upper right corner of the page, click Label. The dataset details page", "product_code":"modelarts", - "title":"Specifications for Importing the Manifest File", - "uri":"modelarts_23_0009.html", + "title":"Data Filtering", + "uri":"dataprepare-modelarts-0023.html", "doc_type":"usermanual", "p_code":"59", "code":"62" }, { - "desc":"A dataset includes labeled and unlabeled data. You can select images or filter data based on the filter criteria and export to a new dataset or the specified OBS director", + "desc":"Images or target bounding boxes are analyzed based on image features, such as blurs and brightness to draw visualized curves to help process datasets.You can also select ", "product_code":"modelarts", - "title":"Exporting Data", - "uri":"modelarts_23_0214.html", + "title":"Data Feature Analysis", + "uri":"dataprepare-modelarts-0024.html", "doc_type":"usermanual", - "p_code":"46", + "p_code":"59", "code":"63" }, { - "desc":"For a created dataset, you can modify its basic information to match service changes.You have created a dataset.Log in to the ModelArts management console. In the left na", + "desc":"Model training requires a large amount of labeled data. Therefore, before training a model, label data. You can create a manual labeling job labeled by one person or by a", "product_code":"modelarts", - "title":"Modifying a Dataset", - "uri":"modelarts_23_0020.html", + "title":"Labeling Data", + "uri":"dataprepare-modelarts-0025.html", "doc_type":"usermanual", - "p_code":"46", + "p_code":"44", "code":"64" }, { - "desc":"ModelArts distinguishes data of the same source according to versions labeled at different time, which facilitates the selection of dataset versions during subsequent mod", + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", - "title":"Publishing a Dataset", - "uri":"modelarts_23_0018.html", + "title":"Publishing Data", + "uri":"dataprepare-modelarts-0026.html", "doc_type":"usermanual", - "p_code":"46", + "p_code":"44", "code":"65" }, { - "desc":"If a dataset is no longer in use, you can delete it to release resources.After a dataset is deleted, if you need to delete the data in the dataset input and output paths ", + "desc":"ModelArts distinguishes data of the same source according to versions processed or labeled at different time, which facilitates the selection of dataset versions for subs", "product_code":"modelarts", - "title":"Deleting a Dataset", - "uri":"modelarts_23_0021.html", + "title":"Introduction to Data Publishing", + "uri":"dataprepare-modelarts-0027.html", "doc_type":"usermanual", - "p_code":"46", + "p_code":"65", "code":"66" }, { - "desc":"After labeling data, you can publish the dataset to multiple versions for management. For the published versions, you can view the dataset version updates, set the curren", + "desc":"Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Datasets.Locate the row containing the target dataset and click P", "product_code":"modelarts", - "title":"Managing Dataset Versions", - "uri":"modelarts_23_0019.html", + "title":"Publishing a Data Version", + "uri":"dataprepare-modelarts-0028.html", "doc_type":"usermanual", - "p_code":"46", + "p_code":"65", "code":"67" }, { - "desc":"Only datasets of image classification and object detection types support the auto hard example detection function.In a dataset, labeled or unlabeled image data can be lab", + "desc":"During data preparation, you can publish data into multiple versions for dataset management. You can view version updates, set the current version, and delete versions.Lo", + "product_code":"modelarts", + "title":"Managing Data Versions", + "uri":"dataprepare-modelarts-0029.html", + "doc_type":"usermanual", + "p_code":"65", + "code":"68" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Exporting Data", + "uri":"dataprepare-modelarts-0030.html", + "doc_type":"usermanual", + "p_code":"44", + "code":"69" + }, + { + "desc":"You can select data or filter data based on the filter criteria in a dataset and export to a new dataset or the specified OBS path. The historical export records can be v", + "product_code":"modelarts", + "title":"Introduction to Exporting Data", + "uri":"dataprepare-modelarts-0031.html", + "doc_type":"usermanual", + "p_code":"69", + "code":"70" + }, + { + "desc":"Log in to the ModelArts management console. In the left navigation pane, choose Data Management > Datasets.In the dataset list, select an image dataset and click the data", + "product_code":"modelarts", + "title":"Exporting Data to a New Dataset", + "uri":"dataprepare-modelarts-0032.html", + "doc_type":"usermanual", + "p_code":"69", + "code":"71" + }, + { + "desc":"Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Datasets.In the dataset list, select an image dataset and click t", + "product_code":"modelarts", + "title":"Exporting Data to OBS", + "uri":"dataprepare-modelarts-0033.html", + "doc_type":"usermanual", + "p_code":"69", + "code":"72" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Data Processing", + "uri":"modelarts_88_0147.html", + "doc_type":"usermanual", + "p_code":"43", + "code":"73" + }, + { + "desc":"ModelArts provides the data processing function to extract valuable and meaningful data from a large amount of disordered and difficult-to-understand data. After data is ", + "product_code":"modelarts", + "title":"Data Processing Overview", + "uri":"dataprocess-modelarts-00001.html", + "doc_type":"usermanual", + "p_code":"73", + "code":"74" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Description of Built-in Operators for Data Processing", + "uri":"dataprocess-modelarts-00002.html", + "doc_type":"usermanual", + "p_code":"73", + "code":"75" + }, + { + "desc":"ModelArts data validation uses the MetaValidation operator and supports the following image formats: JPG, JPEG, BMP, and PNG. The object detection scenario supports the X", + "product_code":"modelarts", + "title":"Data Validation", + "uri":"dataprocess-modelarts-00003.html", + "doc_type":"usermanual", + "p_code":"75", + "code":"76" + }, + { + "desc":"ModelArts data cleansing is implemented by the PCC operator. The dataset used for image classification or object detection may contain images that do not belong to the re", + "product_code":"modelarts", + "title":"Data Cleansing", + "uri":"dataprocess-modelarts-00004.html", + "doc_type":"usermanual", + "p_code":"75", + "code":"77" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Data Selection", + "uri":"dataprocess-modelarts-00005.html", + "doc_type":"usermanual", + "p_code":"75", + "code":"78" + }, + { + "desc":"The SimDeduplication operator can implement image deduplication based on the similarity threshold you set. Image deduplication is a common method for image data processin", + "product_code":"modelarts", + "title":"Data Deduplication", + "uri":"dataprocess-modelarts-00006.html", + "doc_type":"usermanual", + "p_code":"78", + "code":"79" + }, + { + "desc":"The data with the largest difference can be removed based on the preset proportion.The following two types of operator input are available:Datasets: Select a dataset and ", + "product_code":"modelarts", + "title":"Data Deredundancy", + "uri":"dataprocess-modelarts-00007.html", + "doc_type":"usermanual", + "p_code":"78", + "code":"80" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Data Augmentation", + "uri":"dataprocess-modelarts-00008.html", + "doc_type":"usermanual", + "p_code":"75", + "code":"81" + }, + { + "desc":"Data augmentation is mainly used in scenarios where training data is insufficient or simulation is required. You can transform a labeled dataset to increase the number of", + "product_code":"modelarts", + "title":"Data Augmentation", + "uri":"dataprocess-modelarts-00009.html", + "doc_type":"usermanual", + "p_code":"81", + "code":"82" + }, + { + "desc":"The image generation uses a generative adversarial network (GAN) to generate a new dataset with the existing dataset. A GAN is a network that contains a generator and dis", + "product_code":"modelarts", + "title":"Data Generation", + "uri":"dataprocess-modelarts-00010.html", + "doc_type":"usermanual", + "p_code":"81", + "code":"83" + }, + { + "desc":"CycleGAN operator generates images for domain transfer based on CycleGAN, that is, converts one type of images into another, or converts samples in the X space into sampl", + "product_code":"modelarts", + "title":"Data Transfer Between Domains", + "uri":"dataprocess-modelarts-00011.html", + "doc_type":"usermanual", + "p_code":"81", + "code":"84" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Data Labeling", + "uri":"modelarts_88_0148.html", + "doc_type":"usermanual", + "p_code":"43", + "code":"85" + }, + { + "desc":"Model training requires a large amount of labeled data. Therefore, before training a model, label data. ModelArts offers data labeling functions to assist with this proce", + "product_code":"modelarts", + "title":"Introduction to Data Labeling", + "uri":"datalabel-modelarts_0002.html", + "doc_type":"usermanual", + "p_code":"85", + "code":"86" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Manual Labeling", + "uri":"datalabel-modelarts_0003.html", + "doc_type":"usermanual", + "p_code":"85", + "code":"87" + }, + { + "desc":"Model training requires a large amount of labeled data. Therefore, before training a model, label data. You can create a manual labeling job labeled by one person or by a", + "product_code":"modelarts", + "title":"Creating a Labeling Job", + "uri":"datalabel-modelarts_0004.html", + "doc_type":"usermanual", + "p_code":"87", + "code":"88" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Image Labeling", + "uri":"datalabel-modelarts_0005.html", + "doc_type":"usermanual", + "p_code":"87", + "code":"89" + }, + { + "desc":"Training a model uses a large number of labeled images. Therefore, label images before the model training. You can add labels to images by manual labeling or auto labelin", + "product_code":"modelarts", + "title":"Image Classification", + "uri":"datalabel-modelarts_0006.html", + "doc_type":"usermanual", + "p_code":"89", + "code":"90" + }, + { + "desc":"Training a model uses a large number of labeled images. Therefore, label images before the model training. You can add labels to images by manual labeling or auto labelin", + "product_code":"modelarts", + "title":"Object detection", + "uri":"datalabel-modelarts_0007.html", + "doc_type":"usermanual", + "p_code":"89", + "code":"91" + }, + { + "desc":"Training a model uses a large number of labeled images. Therefore, label images before the model training. You can label images on the ModelArts management console. Alter", + "product_code":"modelarts", + "title":"Image Segmentation", + "uri":"datalabel-modelarts_0008.html", + "doc_type":"usermanual", + "p_code":"89", + "code":"92" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Text Labeling", + "uri":"datalabel-modelarts_0009.html", + "doc_type":"usermanual", + "p_code":"87", + "code":"93" + }, + { + "desc":"Model training requires a large amount of labeled data. Therefore, before the model training, add labels to the files that are not labeled. In addition, you can modify, d", + "product_code":"modelarts", + "title":"Text classification", + "uri":"datalabel-modelarts_0010.html", + "doc_type":"usermanual", + "p_code":"93", + "code":"94" + }, + { + "desc":"Named entity recognition assigns labels to named entities in text, such as time and locations. Before labeling, pay attention to the following:A label name of a named ent", + "product_code":"modelarts", + "title":"Named Entity Recognition", + "uri":"datalabel-modelarts_0011.html", + "doc_type":"usermanual", + "p_code":"93", + "code":"95" + }, + { + "desc":"Triplet labeling is suitable for scenarios where structured information, such as subjects, predicates, and objects, needs to be labeled in statements. With this function,", + "product_code":"modelarts", + "title":"Text Triplet", + "uri":"datalabel-modelarts_0012.html", + "doc_type":"usermanual", + "p_code":"93", + "code":"96" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Audio Labeling", + "uri":"datalabel-modelarts_0013.html", + "doc_type":"usermanual", + "p_code":"87", + "code":"97" + }, + { + "desc":"Model training requires a large amount of labeled data. Therefore, before the model training, label the unlabeled audio files. ModelArts enables you to label audio files ", + "product_code":"modelarts", + "title":"Sound classification", + "uri":"datalabel-modelarts_0014.html", + "doc_type":"usermanual", + "p_code":"97", + "code":"98" + }, + { + "desc":"Model training requires a large amount of labeled data. Therefore, before the model training, label the unlabeled audio files. ModelArts enables you to label audio files ", + "product_code":"modelarts", + "title":"Speech Labeling", + "uri":"datalabel-modelarts_0015.html", + "doc_type":"usermanual", + "p_code":"97", + "code":"99" + }, + { + "desc":"Model training requires a large amount of labeled data. Therefore, before the model training, label the unlabeled audio files. ModelArts enables you to label audio files.", + "product_code":"modelarts", + "title":"Speech Paragraph Labeling", + "uri":"datalabel-modelarts_0016.html", + "doc_type":"usermanual", + "p_code":"97", + "code":"100" + }, + { + "desc":"Model training requires a large amount of labeled video data. Therefore, before the model training, label the unlabeled video files. ModelArts enables you to label video ", + "product_code":"modelarts", + "title":"Video Labeling", + "uri":"datalabel-modelarts_0017.html", + "doc_type":"usermanual", + "p_code":"87", + "code":"101" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Viewing Labeling Jobs", + "uri":"modelarts_23_0347.html", + "doc_type":"usermanual", + "p_code":"87", + "code":"102" + }, + { + "desc":"On the ModelArts Data Labeling page, view your created labeling jobs in the My Creations tab.Log in to the ModelArts management console. In the navigation pane on the lef", + "product_code":"modelarts", + "title":"Viewing My Created Labeling Jobs", + "uri":"modelarts_23_0348.html", + "doc_type":"usermanual", + "p_code":"102", + "code":"103" + }, + { + "desc":"On the ModelArts Data Labeling page, view your participated labeling jobs on the My Participations tab page.Team labeling is enabled when a labeling job is created.Log in", + "product_code":"modelarts", + "title":"Viewing My Participated Labeling Jobs", + "uri":"modelarts_23_0349.html", + "doc_type":"usermanual", + "p_code":"102", + "code":"104" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Auto Labeling", + "uri":"datalabel-modelarts_0018.html", + "doc_type":"usermanual", + "p_code":"85", + "code":"105" + }, + { + "desc":"In addition to manual labeling, ModelArts also provides the auto labeling function to quickly label data, reducing the labeling time by more than 70%. Auto labeling means", + "product_code":"modelarts", + "title":"Creating an Auto Labeling Job", + "uri":"datalabel-modelarts_0019.html", + "doc_type":"usermanual", + "p_code":"105", + "code":"106" + }, + { + "desc":"In a labeling task that processes a large amount of data, auto labeling results cannot be directly used for training because the labeled images are insufficient at the in", "product_code":"modelarts", "title":"Confirming Hard Examples", - "uri":"modelarts_23_0223.html", + "uri":"datalabel-modelarts_0020.html", "doc_type":"usermanual", - "p_code":"46", - "code":"68" + "p_code":"105", + "code":"107" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Team Labeling", + "uri":"datalabel-modelarts_0022.html", + "doc_type":"usermanual", + "p_code":"85", + "code":"108" + }, + { + "desc":"Generally, a small data labeling job can be completed by an individual. However, team work is required to label a large dataset. ModelArts provides team labeling, allowin", + "product_code":"modelarts", + "title":"Team Labeling Overview", + "uri":"datalabel-modelarts_0023.html", + "doc_type":"usermanual", + "p_code":"108", + "code":"109" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Creating and Managing Teams", + "uri":"datalabel-modelarts_0024.html", + "doc_type":"usermanual", + "p_code":"108", + "code":"110" + }, + { + "desc":"Team labeling is managed in a unit of teams. To enable team labeling for a dataset, a team must be specified. Multiple members can be added to a team.An account can have ", + "product_code":"modelarts", + "title":"Managing Teams", + "uri":"datalabel-modelarts_0025.html", + "doc_type":"usermanual", + "p_code":"110", + "code":"111" + }, + { + "desc":"There is no member in a new team. You need to add members who will participate in a team labeling job.A maximum of 100 members can be added to a team. If there are more t", + "product_code":"modelarts", + "title":"Managing Team Members", + "uri":"datalabel-modelarts_0026.html", + "doc_type":"usermanual", + "p_code":"110", + "code":"112" + }, + { + "desc":"If you enable team labeling when creating a labeling job and assign a team to label the dataset, the system creates a labeling job based on the team by default. After cre", + "product_code":"modelarts", + "title":"Creating a Team Labeling Job", + "uri":"datalabel-modelarts_0027.html", + "doc_type":"usermanual", + "p_code":"108", + "code":"113" + }, + { + "desc":"Typically, users label data in Data Management of the ModelArts console. Data Management provides data management capabilities such as dataset management, data labeling, ", + "product_code":"modelarts", + "title":"Logging In to ModelArts", + "uri":"datalabel-modelarts_0028.html", + "doc_type":"usermanual", + "p_code":"108", + "code":"114" + }, + { + "desc":"After logging in to the data labeling page on the management console, you can click the My Participations tab to view the assigned labeling job and click the job name to ", + "product_code":"modelarts", + "title":"Starting a Team Labeling Job", + "uri":"datalabel-modelarts_0029.html", + "doc_type":"usermanual", + "p_code":"108", + "code":"115" + }, + { + "desc":"After team labeling is complete, the reviewer can review the labeling result.Log in to the ModelArts management console. In the navigation pane, choose Data Management > ", + "product_code":"modelarts", + "title":"Reviewing Team Labeling Results", + "uri":"datalabel-modelarts_0030.html", + "doc_type":"usermanual", + "p_code":"108", + "code":"116" + }, + { + "desc":"Initiating acceptanceAfter team members complete data labeling, the labeling job creator can initiate acceptance to check labeling results. The acceptance can be initiate", + "product_code":"modelarts", + "title":"Accepting Team Labeling Results", + "uri":"datalabel-modelarts_0031.html", + "doc_type":"usermanual", + "p_code":"108", + "code":"117" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -618,7 +1059,7 @@ "uri":"modelarts_30_0000.html", "doc_type":"usermanual", "p_code":"", - "code":"69" + "code":"118" }, { "desc":"This document describes the DevEnviron notebook functions of the new version.Software development is a process of reducing developer costs and improving development exper", @@ -626,8 +1067,8 @@ "title":"DevEnviron Overview", "uri":"modelarts_30_0001.html", "doc_type":"usermanual", - "p_code":"69", - "code":"70" + "p_code":"118", + "code":"119" }, { "desc":"ModelArts provides flexible, open development environments. Select a development environment based on site requirements.In-cloud notebook that is out of the box, relievin", @@ -635,8 +1076,8 @@ "title":"DevEnviron Application Scenarios", "uri":"modelarts_30_0002.html", "doc_type":"usermanual", - "p_code":"69", - "code":"71" + "p_code":"118", + "code":"120" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -644,8 +1085,8 @@ "title":"Managing Notebook Instances", "uri":"modelarts_30_0003.html", "doc_type":"usermanual", - "p_code":"69", - "code":"72" + "p_code":"118", + "code":"121" }, { "desc":"Before developing a model, create a notebook instance and access it for coding.Only running notebook instances can be accessed or stopped.A maximum of 10 notebook instanc", @@ -653,8 +1094,8 @@ "title":"Creating a Notebook Instance", "uri":"modelarts_30_0004.html", "doc_type":"usermanual", - "p_code":"72", - "code":"73" + "p_code":"121", + "code":"122" }, { "desc":"Access a notebook instance in the Running state for coding.The methods of accessing notebook instances vary depending on the AI engine based on which the instance was cre", @@ -662,8 +1103,8 @@ "title":"Accessing a Notebook Instance", "uri":"modelarts_30_0005.html", "doc_type":"usermanual", - "p_code":"72", - "code":"74" + "p_code":"121", + "code":"123" }, { "desc":"Stop the notebook instances that are not needed. You can also restart a stopped instance.Log in to the ModelArts management console. Choose DevEnviron > Notebook in the n", @@ -671,8 +1112,8 @@ "title":"Starting, Stopping, or Deleting a Notebook Instance", "uri":"modelarts_30_0006.html", "doc_type":"usermanual", - "p_code":"72", - "code":"75" + "p_code":"121", + "code":"124" }, { "desc":"Storage varies depending on performance, usability, and cost. No storage media can cover all scenarios. Learning about in-cloud storage application scenarios for better u", @@ -680,8 +1121,8 @@ "title":"Selecting Storage in DevEnviron", "uri":"modelarts_30_0033.html", "doc_type":"usermanual", - "p_code":"72", - "code":"76" + "p_code":"121", + "code":"125" }, { "desc":"If a notebook instance uses an EVS disk for storage, the disk is mounted to /home/ma-user/work/ of the notebook container and the disk capacity can be expanded by up to 2", @@ -689,8 +1130,8 @@ "title":"Dynamically Expanding EVS Disk Capacity", "uri":"modelarts_30_0040.html", "doc_type":"usermanual", - "p_code":"72", - "code":"77" + "p_code":"121", + "code":"126" }, { "desc":"During the creation of a notebook instance, if you set a whitelist for remotely accessing it, you can change the IP addresses in the whitelist on the notebook instance de", @@ -698,8 +1139,8 @@ "title":"Changing an IP Address for Remotely Accessing a Notebook Instance", "uri":"modelarts_30_0023.html", "doc_type":"usermanual", - "p_code":"72", - "code":"78" + "p_code":"121", + "code":"127" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -707,8 +1148,8 @@ "title":"Using JupyterLab to Develop Models", "uri":"modelarts_30_0007.html", "doc_type":"usermanual", - "p_code":"69", - "code":"79" + "p_code":"118", + "code":"128" }, { "desc":"JupyterLab is the next-generation web-based interactive development environment of Jupyter Notebook, enabling you to compile notebooks, operate terminals, edit Markdown t", @@ -716,8 +1157,8 @@ "title":"JupyterLab Overview and Common Operations", "uri":"modelarts_30_0009.html", "doc_type":"usermanual", - "p_code":"79", - "code":"80" + "p_code":"128", + "code":"129" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -725,8 +1166,8 @@ "title":"Uploading Files to JupyterLab", "uri":"modelarts_30_0041.html", "doc_type":"usermanual", - "p_code":"79", - "code":"81" + "p_code":"128", + "code":"130" }, { "desc":"Easy and fast file uploading is a common requirement in AI development.Before the optimization, ModelArts only allowed local files not exceeding 100 MB to be directly upl", @@ -734,8 +1175,8 @@ "title":"Scenarios", "uri":"modelarts_30_0042.html", "doc_type":"usermanual", - "p_code":"81", - "code":"82" + "p_code":"130", + "code":"131" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -743,8 +1184,8 @@ "title":"Uploading Files from a Local Path to JupyterLab", "uri":"modelarts_30_0043.html", "doc_type":"usermanual", - "p_code":"81", - "code":"83" + "p_code":"130", + "code":"132" }, { "desc":"JupyterLab provides multiple methods for uploading files.For a file that does not exceed 100 MB, directly upload it, and details such as the file size, upload progress, a", @@ -752,8 +1193,8 @@ "title":"Upload Scenarios and Entries", "uri":"modelarts_30_0044.html", "doc_type":"usermanual", - "p_code":"83", - "code":"84" + "p_code":"132", + "code":"133" }, { "desc":"For a file not exceeding 100 MB, directly upload it to the target notebook instance. Detailed information, such as the file size, upload progress, and upload speed are di", @@ -761,8 +1202,8 @@ "title":"Uploading a Local File Less Than 100 MB to JupyterLab", "uri":"modelarts_30_0045.html", "doc_type":"usermanual", - "p_code":"83", - "code":"85" + "p_code":"132", + "code":"134" }, { "desc":"For a file that exceeds 100 MB but does not exceed 5 GB, upload the file to OBS (an object bucket or a parallel file system), and then download the file from OBS to the t", @@ -770,8 +1211,8 @@ "title":"Uploading a Local File with a Size Ranging from 100 MB to 5 GB to JupyterLab", "uri":"modelarts_30_0046.html", "doc_type":"usermanual", - "p_code":"83", - "code":"86" + "p_code":"132", + "code":"135" }, { "desc":"A file exceeding 5 GB cannot be directly uploaded to JupyterLab.To upload files exceeding 5 GB, upload them to OBS. Then, call the ModelArts MoXing or SDK API in the targ", @@ -779,8 +1220,8 @@ "title":"Uploading a Local File Larger Than 5 GB to JupyterLab", "uri":"modelarts_30_0047.html", "doc_type":"usermanual", - "p_code":"83", - "code":"87" + "p_code":"132", + "code":"136" }, { "desc":"Files can be cloned from a GitHub open-source repository to JupyterLab.Use JupyterLab to open a running notebook instance.Click in the navigation bar on the top of the J", @@ -788,8 +1229,8 @@ "title":"Cloning an open-source repository in GitHub", "uri":"modelarts_30_0048.html", "doc_type":"usermanual", - "p_code":"81", - "code":"88" + "p_code":"130", + "code":"137" }, { "desc":"In JupyterLab, you can download files from OBS to a notebook instance.Use JupyterLab to open a running notebook instance.Click in the navigation bar on the top of the Ju", @@ -797,8 +1238,8 @@ "title":"Uploading OBS Files to JupyterLab", "uri":"modelarts_30_0049.html", "doc_type":"usermanual", - "p_code":"81", - "code":"89" + "p_code":"130", + "code":"138" }, { "desc":"Files can be downloaded through remote file addresses to JupyterLab.Method: Enter the URL of a remote file in the text box of a browser, and the file is directly download", @@ -806,8 +1247,8 @@ "title":"Uploading Remote Files to JupyterLab", "uri":"modelarts_30_0050.html", "doc_type":"usermanual", - "p_code":"81", - "code":"90" + "p_code":"130", + "code":"139" }, { "desc":"Files created in JupyterLab can be downloaded to a local path. The operations for downloading a file are the same, regardless of whether the created notebook instance use", @@ -815,8 +1256,8 @@ "title":"Downloading a File from JupyterLab to a Local Path", "uri":"modelarts_30_0011.html", "doc_type":"usermanual", - "p_code":"79", - "code":"91" + "p_code":"128", + "code":"140" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -824,8 +1265,8 @@ "title":"JupyterLab Plug-ins", "uri":"devtool-modelarts_0211.html", "doc_type":"usermanual", - "p_code":"79", - "code":"92" + "p_code":"128", + "code":"141" }, { "desc":"The code parametrization plug-in simplifies notebook cases. You can quickly adjust parameters and train models based on notebook cases without complex code. This plug-in ", @@ -833,8 +1274,8 @@ "title":"Code Parametrization Plug-in", "uri":"devtool-modelarts_0212.html", "doc_type":"usermanual", - "p_code":"92", - "code":"93" + "p_code":"141", + "code":"142" }, { "desc":"Notebook instances allow you to use ModelArts SDK to manage OBS, training jobs, models, and real-time services.Your notebook instances have automatically obtained your AK", @@ -842,8 +1283,8 @@ "title":"Using ModelArts SDK", "uri":"modelarts_30_0030.html", "doc_type":"usermanual", - "p_code":"79", - "code":"94" + "p_code":"128", + "code":"143" }, { "desc":"This section describes how to use PuTTY to remotely log in to a notebook instance on the cloud in the Windows environment.You have created a notebook instance with remote", @@ -851,8 +1292,8 @@ "title":"Configuring a Local IDE Accessed Using SSH", "uri":"modelarts_30_0038.html", "doc_type":"usermanual", - "p_code":"69", - "code":"95" + "p_code":"118", + "code":"144" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -861,7 +1302,7 @@ "uri":"modelarts_23_0032.html", "doc_type":"usermanual", "p_code":"", - "code":"96" + "code":"145" }, { "desc":"ModelArts integrates the open-source Jupyter Notebook and JupyterLab to provide you with online interactive development and debugging environments. You can use the Notebo", @@ -869,8 +1310,8 @@ "title":"Introduction to Notebook", "uri":"modelarts_23_0033.html", "doc_type":"usermanual", - "p_code":"96", - "code":"97" + "p_code":"145", + "code":"146" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -878,8 +1319,8 @@ "title":"Managing Notebook Instances", "uri":"modelarts_23_0111.html", "doc_type":"usermanual", - "p_code":"96", - "code":"98" + "p_code":"145", + "code":"147" }, { "desc":"Before developing a model, create a notebook instance, open it, and perform encoding.Only notebook instances in the Running state can be started.A maximum of 10 notebook ", @@ -887,8 +1328,8 @@ "title":"Creating a Notebook Instance", "uri":"modelarts_23_0034.html", "doc_type":"usermanual", - "p_code":"98", - "code":"99" + "p_code":"147", + "code":"148" }, { "desc":"You can open a created notebook instance (that is, an instance in the Running state) and start coding in the development environment.Go to the Jupyter Notebook page.In th", @@ -896,8 +1337,8 @@ "title":"Opening a Notebook Instance", "uri":"modelarts_23_0325.html", "doc_type":"usermanual", - "p_code":"98", - "code":"100" + "p_code":"147", + "code":"149" }, { "desc":"You can stop unwanted notebook instances to prevent unnecessary fees. You can also start a notebook instance that is in the Stopped state to use it again.Log in to the Mo", @@ -905,8 +1346,8 @@ "title":"Starting or Stopping a Notebook Instance", "uri":"modelarts_23_0041.html", "doc_type":"usermanual", - "p_code":"98", - "code":"101" + "p_code":"147", + "code":"150" }, { "desc":"You can delete notebook instances that are no longer used to release resources.Log in to the ModelArts management console. In the left navigation pane, choose DevEnviron ", @@ -914,8 +1355,8 @@ "title":"Deleting a Notebook Instance", "uri":"modelarts_23_0042.html", "doc_type":"usermanual", - "p_code":"98", - "code":"102" + "p_code":"147", + "code":"151" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -923,8 +1364,8 @@ "title":"Using Jupyter Notebook", "uri":"modelarts_23_0035.html", "doc_type":"usermanual", - "p_code":"96", - "code":"103" + "p_code":"145", + "code":"152" }, { "desc":"Jupyter Notebook is a web-based application for interactive computing. It can be applied to full-process computing: development, documentation, running code, and presenti", @@ -932,8 +1373,8 @@ "title":"Introduction to Jupyter Notebook", "uri":"modelarts_23_0326.html", "doc_type":"usermanual", - "p_code":"103", - "code":"104" + "p_code":"152", + "code":"153" }, { "desc":"This section describes common operations on Jupyter Notebook.In the notebook instance list, locate the row where the target notebook instance resides and click Open in th", @@ -941,8 +1382,8 @@ "title":"Common Operations on Jupyter Notebook", "uri":"modelarts_23_0120.html", "doc_type":"usermanual", - "p_code":"103", - "code":"105" + "p_code":"152", + "code":"154" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -950,8 +1391,8 @@ "title":"Configuring the Jupyter Notebook Environment", "uri":"modelarts_23_0327.html", "doc_type":"usermanual", - "p_code":"103", - "code":"106" + "p_code":"152", + "code":"155" }, { "desc":"For developers who are used to coding, the terminal function is very convenient and practical. This section describes how to enable the terminal function in a notebook in", @@ -959,8 +1400,8 @@ "title":"Using the Notebook Terminal Function", "uri":"modelarts_23_0117.html", "doc_type":"usermanual", - "p_code":"106", - "code":"107" + "p_code":"155", + "code":"156" }, { "desc":"For a GPU-based notebook instance, you can switch different versions of CUDA on the Terminal page of Jupyter.CPU-based notebook instances do not use CUDA. Therefore, the ", @@ -968,8 +1409,8 @@ "title":"Switching the CUDA Version on the Terminal Page of a GPU-based Notebook Instance", "uri":"modelarts_23_0280.html", "doc_type":"usermanual", - "p_code":"106", - "code":"108" + "p_code":"155", + "code":"157" }, { "desc":"Multiple environments have been installed in ModelArts notebook instances, including TensorFlow. You can use pip install to install external libraries from a Jupyter note", @@ -977,8 +1418,8 @@ "title":"Installing External Libraries and Kernels in Notebook Instances", "uri":"modelarts_23_0040.html", "doc_type":"usermanual", - "p_code":"106", - "code":"109" + "p_code":"155", + "code":"158" }, { "desc":"In notebook instances, you can use ModelArts SDKs to manage OBS, training jobs, models, and real-time services.For details about how to use ModelArts SDKs, see ModelArts ", @@ -986,8 +1427,8 @@ "title":"Using ModelArts SDKs", "uri":"modelarts_23_0039.html", "doc_type":"usermanual", - "p_code":"103", - "code":"110" + "p_code":"152", + "code":"159" }, { "desc":"If you specify Storage Path during notebook instance creation, your compiled code will be automatically stored in your specified OBS bucket. If code invocation among diff", @@ -995,8 +1436,8 @@ "title":"Synchronizing Files with OBS", "uri":"modelarts_23_0038.html", "doc_type":"usermanual", - "p_code":"103", - "code":"111" + "p_code":"152", + "code":"160" }, { "desc":"After code compiling is finished, you can save the entered code as a .py file which can be used for starting training jobs.Create and open a notebook instance or open an ", @@ -1004,8 +1445,8 @@ "title":"Using the Convert to Python File Function", "uri":"modelarts_23_0037.html", "doc_type":"usermanual", - "p_code":"103", - "code":"112" + "p_code":"152", + "code":"161" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1013,8 +1454,8 @@ "title":"Using JupyterLab", "uri":"modelarts_23_0330.html", "doc_type":"usermanual", - "p_code":"96", - "code":"113" + "p_code":"145", + "code":"162" }, { "desc":"JupyterLab is an interactive development environment. It is a next-generation product of Jupyter Notebook. JupyterLab enables you to compile notebooks, operate terminals,", @@ -1022,8 +1463,8 @@ "title":"Introduction to JupyterLab and Common Operations", "uri":"modelarts_23_0209.html", "doc_type":"usermanual", - "p_code":"113", - "code":"114" + "p_code":"162", + "code":"163" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1031,8 +1472,8 @@ "title":"Uploading and Downloading Data", "uri":"modelarts_23_0331.html", "doc_type":"usermanual", - "p_code":"113", - "code":"115" + "p_code":"162", + "code":"164" }, { "desc":"On the JupyterLab page, click Upload Files to upload a file. For details, see Uploading a File in Introduction to JupyterLab and Common Operations. If a message is displa", @@ -1040,8 +1481,8 @@ "title":"Uploading Data to JupyterLab", "uri":"modelarts_23_0332.html", "doc_type":"usermanual", - "p_code":"115", - "code":"116" + "p_code":"164", + "code":"165" }, { "desc":"Only files within 100 MB in JupyterLab can be downloaded to a local PC. You can perform operations in different scenarios based on the storage location selected when crea", @@ -1049,8 +1490,8 @@ "title":"Downloading a File from JupyterLab", "uri":"modelarts_23_0333.html", "doc_type":"usermanual", - "p_code":"115", - "code":"117" + "p_code":"164", + "code":"166" }, { "desc":"In notebook instances, you can use ModelArts SDKs to manage OBS, training jobs, models, and real-time services.For details about how to use ModelArts SDKs, see ModelArts ", @@ -1058,8 +1499,8 @@ "title":"Using ModelArts SDKs", "uri":"modelarts_23_0335.html", "doc_type":"usermanual", - "p_code":"113", - "code":"118" + "p_code":"162", + "code":"167" }, { "desc":"If you specify Storage Path during notebook instance creation, your compiled code will be automatically stored in your specified OBS bucket. If code invocation among diff", @@ -1067,179 +1508,233 @@ "title":"Synchronizing Files with OBS", "uri":"modelarts_23_0336.html", "doc_type":"usermanual", - "p_code":"113", - "code":"119" + "p_code":"162", + "code":"168" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", - "title":"Training Management (New Version)", - "uri":"modelarts_23_0284.html", + "title":"Training Management", + "uri":"modelarts_77_0148.html", "doc_type":"usermanual", "p_code":"", - "code":"120" + "code":"169" }, { - "desc":"ModelArts provides model training of both the new and old versions. The new version features enhanced functions, optimized scheduling, and improved APIs. You are advised ", + "desc":"AI modeling involves two stages:Development: To train using deep learning, you must set up and configure the environment and debug the code. For code debugging, it is rec", "product_code":"modelarts", - "title":"Introduction to Model Training", - "uri":"modelarts_23_0285.html", + "title":"Introduction to Model Development", + "uri":"develop-modelarts-0001.html", "doc_type":"usermanual", - "p_code":"120", - "code":"121" + "p_code":"169", + "code":"170" }, { "desc":"ModelArts uses OBS to store data, and backs up and takes snapshots for models, achieving secure, reliable storage at low costs.OBSObtaining Training DataOBS provides stab", "product_code":"modelarts", "title":"Preparing Data", - "uri":"modelarts_23_0351.html", + "uri":"develop-modelarts-0002.html", "doc_type":"usermanual", - "p_code":"120", - "code":"122" + "p_code":"169", + "code":"171" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", - "title":"Selecting an Algorithm", - "uri":"modelarts_23_0230.html", + "title":"Preparing Algorithms", + "uri":"develop-modelarts-0003.html", "doc_type":"usermanual", - "p_code":"120", - "code":"123" + "p_code":"169", + "code":"172" }, { "desc":"Machine learning explores general rules from limited volume of data and uses these rules to predict unknown data. To obtain more accurate prediction results, select a pro", "product_code":"modelarts", - "title":"Introduction to Algorithm Selection", - "uri":"modelarts_23_0234.html", + "title":"Introduction to Algorithm Preparation", + "uri":"develop-modelarts-0004.html", "doc_type":"usermanual", - "p_code":"123", - "code":"124" + "p_code":"172", + "code":"173" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", - "title":"Using a Custom Script", - "uri":"modelarts_23_0231.html", + "title":"Using a Preset Image (Custom Script)", + "uri":"develop-modelarts-0006.html", "doc_type":"usermanual", - "p_code":"123", - "code":"125" + "p_code":"172", + "code":"174" }, { - "desc":"If the subscribed algorithms cannot meet your requirements or you want to migrate local algorithms to ModelArts for training, use the ModelArts built-in training engines ", + "desc":"If the subscribed algorithms cannot meet your requirements or you want to migrate local algorithms to ModelArts for training, use the ModelArts preset images to create al", "product_code":"modelarts", - "title":"Introduction to Custom Script", - "uri":"modelarts_23_0283.html", + "title":"Overview", + "uri":"develop-modelarts-0007.html", "doc_type":"usermanual", - "p_code":"125", - "code":"126" + "p_code":"174", + "code":"175" }, { - "desc":"Before you use a custom script to create an algorithm, develop the algorithm code. This section describes how to modify local code for model training on ModelArts.When cr", + "desc":"Before you use a preset image to create an algorithm, develop the algorithm code. This section describes how to modify local code for model training on ModelArts.When cre", "product_code":"modelarts", "title":"Developing a Custom Script", - "uri":"modelarts_23_0240_0.html", + "uri":"develop-modelarts-0008.html", "doc_type":"usermanual", - "p_code":"125", - "code":"127" + "p_code":"174", + "code":"176" }, { "desc":"Your locally developed algorithms or algorithms developed using other tools can be uploaded to ModelArts for unified management. Note the following when creating a custom", "product_code":"modelarts", "title":"Creating an Algorithm", - "uri":"modelarts_23_0233.html", + "uri":"develop-modelarts-0009.html", "doc_type":"usermanual", - "p_code":"125", - "code":"128" + "p_code":"174", + "code":"177" }, { - "desc":"The preset images can be used in most training scenarios. In certain scenarios, ModelArts allows you to create custom images to train models. Custom images can be used to", + "desc":"The subscribed algorithms and preset images can be used in most training scenarios. In certain scenarios, ModelArts allows you to create custom images to train models.Cus", "product_code":"modelarts", - "title":"Using Custom Images", + "title":"Using a Custom Image", "uri":"develop-modelarts-0077.html", "doc_type":"usermanual", - "p_code":"123", - "code":"129" + "p_code":"172", + "code":"178" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", "title":"Performing a Training", - "uri":"modelarts_23_0352.html", + "uri":"develop-modelarts-0010.html", "doc_type":"usermanual", - "p_code":"120", - "code":"130" + "p_code":"169", + "code":"179" }, { "desc":"ModelArts training management enables you to create training jobs, view training statuses, and manage job versions. Model training is an iterative optimization process. T", "product_code":"modelarts", "title":"Creating a Training Job", - "uri":"modelarts_23_0286.html", + "uri":"develop-modelarts-0011.html", "doc_type":"usermanual", - "p_code":"130", - "code":"131" + "p_code":"179", + "code":"180" }, { - "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "desc":"Log in to the ModelArts management console.In the navigation pane on the left, choose Training Management > Training Jobs.In the training job list, click a job name to sw", "product_code":"modelarts", - "title":"Viewing Job Details", - "uri":"modelarts_23_0288.html", + "title":"Viewing Training Job Details", + "uri":"develop-modelarts-0013.html", "doc_type":"usermanual", - "p_code":"130", - "code":"132" + "p_code":"179", + "code":"181" }, { - "desc":"Log in to the ModelArts management console. In the left navigation pane, choose Training Management > Training Jobs (New). The training job list is displayed by default.C", + "desc":"On the training job details page, you can preview logs, download logs, search for logs by keyword, and filter system logs in the log pane.Previewing logsYou can preview l", "product_code":"modelarts", - "title":"Training Job Details", - "uri":"modelarts_23_0400.html", + "title":"Viewing Training Job Logs", + "uri":"develop-modelarts-0097.html", "doc_type":"usermanual", - "p_code":"132", - "code":"133" + "p_code":"179", + "code":"182" }, { "desc":"Any key event of a training job will be recorded at the backend after the training job is displayed for you. You can check events on the training job details page.This he", "product_code":"modelarts", - "title":"Training Job Event", - "uri":"develop-modelarts-0081.html", + "title":"Viewing Training Job Events", + "uri":"develop-modelarts-0092.html", "doc_type":"usermanual", - "p_code":"132", - "code":"134" + "p_code":"179", + "code":"183" }, { - "desc":"On the training job details page, you can preview logs, download logs, search for logs by keyword, and identify training faults in the log pane.Preview logs.You can previ", + "desc":"You can view the resource usage of a compute node in the Resource Usages window. The data of at most the last three days can be displayed. When the resource usage window ", "product_code":"modelarts", - "title":"Training Log Details", - "uri":"modelarts_23_0401.html", + "title":"Viewing the Resource Usage of a Training Job", + "uri":"develop-modelarts-0015.html", "doc_type":"usermanual", - "p_code":"132", - "code":"135" + "p_code":"179", + "code":"184" }, { - "desc":"In the Resource Usages pane, view resource usage of compute nodes.Operation 1: If a training job uses multiple compute nodes, choose a node from the drop-down list box to", + "desc":"This section describes environment variables preset in a training container. The environment variables include:Path environment variablesEnvironment variables of a distri", "product_code":"modelarts", - "title":"Resource Usage", - "uri":"modelarts_23_0402.html", + "title":"Viewing Environment Variables of a Training Container", + "uri":"develop-modelarts-0104.html", "doc_type":"usermanual", - "p_code":"132", - "code":"136" + "p_code":"179", + "code":"185" }, { - "desc":"In the training job list, click Stop in the Operation column of a training job that is in creating, pending, or running state to stop the job.A training job in completed,", + "desc":"To modify the algorithm of a training job, click Save As Algorithm in the upper right corner of the training job details page.On the Algorithms page, the algorithm parame", "product_code":"modelarts", "title":"Stopping, Rebuilding, or Searching for a Training Job", - "uri":"modelarts_23_0287.html", + "uri":"develop-modelarts-0017.html", "doc_type":"usermanual", - "p_code":"130", - "code":"137" + "p_code":"179", + "code":"186" + }, + { + "desc":"You can use Cloud Shell provided by the ModelArts console to log in to a running training container.You can use Cloud Shell to log in to a running training container usin", + "product_code":"modelarts", + "title":"Logging In to a Training Container Using Cloud Shell", + "uri":"develop-modelarts-0106.html", + "doc_type":"usermanual", + "p_code":"179", + "code":"187" }, { "desc":"Release resources of a training job when not in use.On the Training Jobs page, click Delete in the Operation column of the target training job.Go to OBS and delete the OB", "product_code":"modelarts", "title":"Releasing Training Job Resources", - "uri":"modelarts_23_0353.html", + "uri":"develop-modelarts-0018.html", "doc_type":"usermanual", - "p_code":"130", - "code":"138" + "p_code":"179", + "code":"188" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Advanced Training Operations", + "uri":"develop-modelarts-0021.html", + "doc_type":"usermanual", + "p_code":"169", + "code":"189" + }, + { + "desc":"During model training, a training failure may occur due to a hardware fault. For hardware faults, ModelArts provides fault tolerance check to isolate faulty nodes to impr", + "product_code":"modelarts", + "title":"Training Fault Tolerance Check", + "uri":"modelarts_trouble_0003.html", + "doc_type":"usermanual", + "p_code":"189", + "code":"190" + }, + { + "desc":"Resumable training indicates that an interrupted training job can be automatically resumed from the checkpoint where the previous training was interrupted. This method is", + "product_code":"modelarts", + "title":"Resumable Training and Incremental Training", + "uri":"develop-modelarts-0023.html", + "doc_type":"usermanual", + "p_code":"189", + "code":"191" + }, + { + "desc":"A training job may be suspended due to unknown reasons. If the suspension cannot be detected promptly, resources cannot be released, leading to a waste. To minimize resou", + "product_code":"modelarts", + "title":"Detecting Training Job Suspension", + "uri":"modelarts_trouble_0108.html", + "doc_type":"usermanual", + "p_code":"189", + "code":"192" + }, + { + "desc":"You can configure the priority when you create a training job using a new-version dedicated resource pool. You can change the priority of a pending job. The value ranges ", + "product_code":"modelarts", + "title":"Permission to Set the Highest Job Priority", + "uri":"develop-modelarts-0082.html", + "doc_type":"usermanual", + "p_code":"189", + "code":"193" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1247,8 +1742,8 @@ "title":"Training Hyperparameter Search", "uri":"modelarts_23_0289.html", "doc_type":"usermanual", - "p_code":"120", - "code":"139" + "p_code":"169", + "code":"194" }, { "desc":"The new version of ModelArts training jobs supports hyperparameter search, which can automatically search for optimal hyperparameters for your models.During model trainin", @@ -1256,8 +1751,8 @@ "title":"Introduction to Hyperparameter Search", "uri":"modelarts_23_0290.html", "doc_type":"usermanual", - "p_code":"139", - "code":"140" + "p_code":"194", + "code":"195" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1265,8 +1760,8 @@ "title":"Search Algorithm", "uri":"modelarts_23_0296.html", "doc_type":"usermanual", - "p_code":"139", - "code":"141" + "p_code":"194", + "code":"196" }, { "desc":"In Bayesian optimization, it is assumed that there exists a functional relationship between hyperparameters and the objective function. Based on the evaluation values of ", @@ -1274,8 +1769,8 @@ "title":"Bayesian Optimization (SMAC)", "uri":"modelarts_23_0297.html", "doc_type":"usermanual", - "p_code":"141", - "code":"142" + "p_code":"196", + "code":"197" }, { "desc":"The tree-structured parzen estimator (TPE) algorithm uses the Gaussian mixture model to learn the model hyperparameters. On each trial, for each parameter, TPE fits one G", @@ -1283,8 +1778,8 @@ "title":"TPE Algorithm", "uri":"modelarts_23_0303_0.html", "doc_type":"usermanual", - "p_code":"141", - "code":"143" + "p_code":"196", + "code":"198" }, { "desc":"The simulated annealing algorithm is a simple but effective variant on random search that leverages smoothness in the response surface. The annealing rate is not adaptive", @@ -1292,8 +1787,8 @@ "title":"Simulated Annealing Algorithm", "uri":"modelarts_23_0304_0.html", "doc_type":"usermanual", - "p_code":"141", - "code":"144" + "p_code":"196", + "code":"199" }, { "desc":"Hyperparameters that you want to optimize need to be defined when you configure Hyperparameters. You can specify the name, type, default value, and constraints. For detai", @@ -1301,134 +1796,134 @@ "title":"Creating a Hyperparameter Search Job", "uri":"modelarts_23_0302_0.html", "doc_type":"usermanual", - "p_code":"139", - "code":"145" + "p_code":"194", + "code":"200" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", - "title":"AI Application Management", - "uri":"modelarts_23_0051.html", + "title":"Inference Deployment", + "uri":"modelarts_77_0149.html", "doc_type":"usermanual", "p_code":"", - "code":"146" + "code":"201" }, { - "desc":"AI development and optimization require frequent iterations and debugging. Changes in datasets, training code, or parameters affect the quality of models. If the metadata", + "desc":"After an AI model is developed, you can use it to create an AI application and quickly deploy the application as an inference service. The AI inference capabilities can b", + "product_code":"modelarts", + "title":"Introduction to Inference", + "uri":"inference-modelarts-0001.html", + "doc_type":"usermanual", + "p_code":"201", + "code":"202" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Managing AI Applications", + "uri":"inference-modelarts-0002.html", + "doc_type":"usermanual", + "p_code":"201", + "code":"203" + }, + { + "desc":"AI development and optimization require frequent iterations and debugging. Modifications in datasets, training code, or parameters affect the quality of models. If the me", "product_code":"modelarts", "title":"Introduction to AI Application Management", - "uri":"modelarts_23_0052.html", + "uri":"inference-modelarts-0003.html", "doc_type":"usermanual", - "p_code":"146", - "code":"147" + "p_code":"203", + "code":"204" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", "title":"Creating an AI Application", - "uri":"modelarts_23_0204.html", + "uri":"inference-modelarts-0004.html", "doc_type":"usermanual", - "p_code":"146", - "code":"148" + "p_code":"203", + "code":"205" }, { - "desc":"You can create a training job on ModelArts and perform training to obtain a satisfactory model. Then import the model to Model Management for centralized management. In a", + "desc":"You can create a training job in ModelArts to obtain a satisfactory model. Then, you can import the model to AI Application Management for centralized management. In addi", "product_code":"modelarts", "title":"Importing a Meta Model from a Training Job", - "uri":"modelarts_23_0054.html", + "uri":"inference-modelarts-0006.html", "doc_type":"usermanual", - "p_code":"148", - "code":"149" + "p_code":"205", + "code":"206" }, { - "desc":"Because the configurations of models with the same functions are similar, ModelArts integrates the configurations of such models into a common template. By using this tem", - "product_code":"modelarts", - "title":"Importing a Meta Model from a Template", - "uri":"modelarts_23_0205.html", - "doc_type":"usermanual", - "p_code":"148", - "code":"150" - }, - { - "desc":"For AI engines that are not supported by ModelArts, you can import the models you compile to ModelArts from custom images.For details about the specifications and descrip", - "product_code":"modelarts", - "title":"Importing a Meta Model from a Container Image", - "uri":"modelarts_23_0206.html", - "doc_type":"usermanual", - "p_code":"148", - "code":"151" - }, - { - "desc":"In scenarios where frequently-used frameworks are used for model development and training, you can import the model to ModelArts and use it to create an AI application fo", + "desc":"If a model is developed and trained using a mainstream AI engine, import the model to ModelArts and use the model to create an AI application. In this way, the AI applica", "product_code":"modelarts", "title":"Importing a Meta Model from OBS", - "uri":"modelarts_23_0207.html", + "uri":"inference-modelarts-0008.html", "doc_type":"usermanual", - "p_code":"148", - "code":"152" + "p_code":"205", + "code":"207" + }, + { + "desc":"For AI engines that are not supported by ModelArts, you can import the models you compile to ModelArts from custom images.For details about custom image specifications, s", + "product_code":"modelarts", + "title":"Importing a Meta Model from a Container Image", + "uri":"inference-modelarts-0009.html", + "doc_type":"usermanual", + "p_code":"205", + "code":"208" + }, + { + "desc":"After an AI application is created, you can view its information on the details page.Log in to the ModelArts management console. In the navigation pane on the left, choos", + "product_code":"modelarts", + "title":"Viewing Details About an AI Application", + "uri":"inference-modelarts-0005.html", + "doc_type":"usermanual", + "p_code":"203", + "code":"209" }, { "desc":"To facilitate source tracing and repeated AI application tuning, ModelArts provides the AI application version management function. You can manage models based on version", "product_code":"modelarts", - "title":"Managing AI Application Versions", - "uri":"modelarts_23_0055.html", + "title":"Managing AI Applications", + "uri":"inference-modelarts-0013.html", "doc_type":"usermanual", - "p_code":"146", - "code":"153" + "p_code":"203", + "code":"210" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", - "title":"Deploying a Service", - "uri":"modelarts_23_0057.html", + "title":"Deploying AI Applications as Real-Time Services", + "uri":"inference-modelarts-0016.html", "doc_type":"usermanual", - "p_code":"", - "code":"154" - }, - { - "desc":"After a training job is complete and an AI application is generated, you can deploy the model on the Service Deployment page. You can also deploy the model imported from ", - "product_code":"modelarts", - "title":"Deploying the AI Applications as Services", - "uri":"modelarts_23_0058.html", - "doc_type":"usermanual", - "p_code":"154", - "code":"155" - }, - { - "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", - "product_code":"modelarts", - "title":"Real-Time Services", - "uri":"modelarts_23_0059.html", - "doc_type":"usermanual", - "p_code":"154", - "code":"156" + "p_code":"201", + "code":"211" }, { "desc":"After an AI application is prepared, you can deploy the AI application as a real-time service and predict and call the service.A maximum of 20 real-time services can be d", "product_code":"modelarts", - "title":"Deploying a Model as a Real-Time Service", - "uri":"modelarts_23_0060.html", + "title":"Deploying as a Real-Time Service", + "uri":"inference-modelarts-0018.html", "doc_type":"usermanual", - "p_code":"156", - "code":"157" + "p_code":"211", + "code":"212" }, { "desc":"After an AI application is deployed as a real-time service, you can access the service page to view its details.Log in to the ModelArts management console and choose Serv", "product_code":"modelarts", "title":"Viewing Service Details", - "uri":"modelarts_23_0061.html", + "uri":"inference-modelarts-0019.html", "doc_type":"usermanual", - "p_code":"156", - "code":"158" + "p_code":"211", + "code":"213" }, { "desc":"After an AI application is deployed as a real-time service, you can debug code or add files for testing on the Prediction tab page. Based on the input request (JSON text ", "product_code":"modelarts", - "title":"Testing a Service", - "uri":"modelarts_23_0062.html", + "title":"Testing the Deployed Service", + "uri":"inference-modelarts-0020.html", "doc_type":"usermanual", - "p_code":"156", - "code":"159" + "p_code":"211", + "code":"214" }, { "desc":"If a real-time service is in the Running state, the real-time service has been deployed successfully. This service provides a standard RESTful API for users to call. Befo", @@ -1436,485 +1931,152 @@ "title":"Accessing a Real-Time Service (Token-based Authentication)", "uri":"modelarts_23_0063.html", "doc_type":"usermanual", - "p_code":"156", - "code":"160" + "p_code":"211", + "code":"215" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", - "title":"Batch Services", - "uri":"modelarts_23_0065.html", + "title":"Deploying AI Applications as Batch Services", + "uri":"inference-modelarts-0039.html", "doc_type":"usermanual", - "p_code":"154", - "code":"161" + "p_code":"201", + "code":"216" }, { "desc":"After an AI application is prepared, you can deploy it as a batch service. The Service Deployment > Batch Services page lists all batch services. You can enter a service ", "product_code":"modelarts", - "title":"Deploying a Model as a Batch Service", - "uri":"modelarts_23_0066.html", + "title":"Deploying as a Batch Service", + "uri":"inference-modelarts-0040.html", "doc_type":"usermanual", - "p_code":"161", - "code":"162" + "p_code":"216", + "code":"217" }, { - "desc":"When deploying a batch service, you can select the location of the output data directory. You can view the running result of the batch service that is in the Running comp", + "desc":"When deploying a batch service, you can select the location of the output data directory. You can view the running result of the batch service that is in the Completed st", "product_code":"modelarts", "title":"Viewing the Batch Service Prediction Result", - "uri":"modelarts_23_0067.html", + "uri":"inference-modelarts-0041.html", "doc_type":"usermanual", - "p_code":"161", - "code":"163" + "p_code":"216", + "code":"218" }, { - "desc":"For a deployed service, you can modify its basic information to match service changes and upgrade it. You can modify the basic information about a service in either of th", + "desc":"For a deployed service, you can modify its basic information to match service changes and change the AI application version to upgrade it.You can modify the basic informa", "product_code":"modelarts", "title":"Upgrading a Service", - "uri":"modelarts_23_0071.html", + "uri":"inference-modelarts-0087.html", "doc_type":"usermanual", - "p_code":"154", - "code":"164" + "p_code":"201", + "code":"219" }, { "desc":"You can start services in the Successful, Abnormal, or Stopped status. Services in the Deploying state cannot be started. You can start a service in the following ways:Lo", "product_code":"modelarts", - "title":"Starting or Stopping a Service", - "uri":"modelarts_23_0072.html", + "title":"Starting, Stopping, Deleting, or Restarting a Service", + "uri":"inference-modelarts-0088.html", "doc_type":"usermanual", - "p_code":"154", - "code":"165" + "p_code":"201", + "code":"220" }, { "desc":"If a service is no longer in use, you can delete it to release resources.Log in to the ModelArts management console and choose Service Deployment from the left navigation", "product_code":"modelarts", "title":"Deleting a Service", - "uri":"modelarts_23_0073.html", + "uri":"inference-modelarts-0089.html", "doc_type":"usermanual", - "p_code":"154", - "code":"166" + "p_code":"201", + "code":"221" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Inference Specifications", + "uri":"inference-modelarts-0053.html", + "doc_type":"usermanual", + "p_code":"201", + "code":"222" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", "title":"Model Package Specifications", - "uri":"modelarts_23_0090.html", + "uri":"inference-modelarts-0054.html", "doc_type":"usermanual", - "p_code":"", - "code":"167" + "p_code":"222", + "code":"223" }, { "desc":"When creating an AI application on the AI application management page, make sure that any meta model imported from OBS complies with certain specifications.The model pack", "product_code":"modelarts", - "title":"Model Package Specifications", - "uri":"modelarts_23_0091.html", + "title":"Introduction", + "uri":"inference-modelarts-0055.html", "doc_type":"usermanual", - "p_code":"167", - "code":"168" + "p_code":"223", + "code":"224" }, { - "desc":"A model developer needs to compile a configuration file when publishing a model. The model configuration file describes the model usage, computing framework, precision, i", + "desc":"You must edit a configuration file config.json when publishing a model. The model configuration file describes the model usage, computing framework, precision, inference ", "product_code":"modelarts", - "title":"Specifications for Compiling the Model Configuration File", - "uri":"modelarts_23_0092.html", + "title":"Specifications for Editing a Model Configuration File", + "uri":"inference-modelarts-0056.html", "doc_type":"usermanual", - "p_code":"167", - "code":"169" + "p_code":"223", + "code":"225" }, { "desc":"This section describes the general method of editing model inference code in ModelArts. This section also provides an inference code example for the TensorFlow engine and", "product_code":"modelarts", "title":"Specifications for Writing Model Inference Code", - "uri":"modelarts_23_0093.html", + "uri":"inference-modelarts-0057.html", "doc_type":"usermanual", - "p_code":"167", - "code":"170" - }, - { - "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", - "product_code":"modelarts", - "title":"Model Templates", - "uri":"modelarts_23_0097.html", - "doc_type":"usermanual", - "p_code":"", - "code":"171" - }, - { - "desc":"Because the configurations of models with the same functions are similar, ModelArts integrates the configurations of such models into a common template. By using this tem", - "product_code":"modelarts", - "title":"Introduction to Model Templates", - "uri":"modelarts_23_0098.html", - "doc_type":"usermanual", - "p_code":"171", - "code":"172" - }, - { - "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", - "product_code":"modelarts", - "title":"Templates", - "uri":"modelarts_23_0118.html", - "doc_type":"usermanual", - "p_code":"171", - "code":"173" - }, - { - "desc":"AI engine: TensorFlow 1.8; Environment: Python 2.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or appl", - "product_code":"modelarts", - "title":"TensorFlow-py27 General Template", - "uri":"modelarts_23_0161.html", - "doc_type":"usermanual", - "p_code":"173", - "code":"174" - }, - { - "desc":"AI engine: TensorFlow 1.8; Environment: Python 3.6; Input and output mode: Undefined. Select an appropriate input and output mode based on the model function or applicati", - "product_code":"modelarts", - "title":"TensorFlow-py36 General Template", - "uri":"modelarts_23_0262.html", - "doc_type":"usermanual", - "p_code":"173", - "code":"175" - }, - { - "desc":"AI engine: MXNet 1.2.1; Environment: Python 2.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or applica", - "product_code":"modelarts", - "title":"MXNet-py27 General Template", - "uri":"modelarts_23_0163.html", - "doc_type":"usermanual", - "p_code":"173", - "code":"176" - }, - { - "desc":"AI engine: MXNet 1.2.1; Environment: Python 3.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or applica", - "product_code":"modelarts", - "title":"MXNet-py37 General Template", - "uri":"modelarts_23_0164.html", - "doc_type":"usermanual", - "p_code":"173", - "code":"177" - }, - { - "desc":"AI engine: PyTorch 1.0; Environment: Python 2.7; Input and output mode: Undefined. Select an appropriate input and output mode based on the model function or application ", - "product_code":"modelarts", - "title":"PyTorch-py27 General Template", - "uri":"modelarts_23_0165.html", - "doc_type":"usermanual", - "p_code":"173", - "code":"178" - }, - { - "desc":"AI engine: PyTorch 1.0; Environment: Python 3.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or applica", - "product_code":"modelarts", - "title":"PyTorch-py37 General Template", - "uri":"modelarts_23_0166.html", - "doc_type":"usermanual", - "p_code":"173", - "code":"179" - }, - { - "desc":"AI engine: CPU-based Caffe 1.0; Environment: Python 2.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or", - "product_code":"modelarts", - "title":"Caffe-CPU-py27 General Template", - "uri":"modelarts_23_0167.html", - "doc_type":"usermanual", - "p_code":"173", - "code":"180" - }, - { - "desc":"AI engine: GPU-based Caffe 1.0; Environment: Python 2.7; Input and output mode: Undefined. Select an appropriate input and output mode based on the model function or appl", - "product_code":"modelarts", - "title":"Caffe-GPU-py27 General Template", - "uri":"modelarts_23_0168.html", - "doc_type":"usermanual", - "p_code":"173", - "code":"181" - }, - { - "desc":"AI engine: CPU-based Caffe 1.0; Environment: Python 3.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or", - "product_code":"modelarts", - "title":"Caffe-CPU-py37 General Template", - "uri":"modelarts_23_0169.html", - "doc_type":"usermanual", - "p_code":"173", - "code":"182" - }, - { - "desc":"AI engine: GPU-based Caffe 1.0; Environment: Python 3.7; Input and output mode: undefined mode. Select an appropriate input and output mode based on the model function or", - "product_code":"modelarts", - "title":"Caffe-GPU-py37 General Template", - "uri":"modelarts_23_0170.html", - "doc_type":"usermanual", - "p_code":"173", - "code":"183" - }, - { - "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", - "product_code":"modelarts", - "title":"Input and Output Modes", - "uri":"modelarts_23_0099.html", - "doc_type":"usermanual", - "p_code":"171", - "code":"184" - }, - { - "desc":"This is a built-in input and output mode for object detection. The models using this mode are identified as object detection models. The prediction request path is /, the", - "product_code":"modelarts", - "title":"Built-in Object Detection Mode", - "uri":"modelarts_23_0100.html", - "doc_type":"usermanual", - "p_code":"184", - "code":"185" - }, - { - "desc":"The built-in image processing input and output mode can be applied to models such as image classification, object detection, and image semantic segmentation. The predicti", - "product_code":"modelarts", - "title":"Built-in Image Processing Mode", - "uri":"modelarts_23_0101.html", - "doc_type":"usermanual", - "p_code":"184", - "code":"186" - }, - { - "desc":"This is a built-in input and output mode for predictive analytics. The models using this mode are identified as predictive analytics models. The prediction request path i", - "product_code":"modelarts", - "title":"Built-in Predictive Analytics Mode", - "uri":"modelarts_23_0102.html", - "doc_type":"usermanual", - "p_code":"184", - "code":"187" - }, - { - "desc":"The undefined mode does not define the input and output mode. The input and output mode is determined by the model. Select this mode only when the existing input and outp", - "product_code":"modelarts", - "title":"Undefined Mode", - "uri":"modelarts_23_0103.html", - "doc_type":"usermanual", - "p_code":"184", - "code":"188" + "p_code":"223", + "code":"226" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", "title":"Examples of Custom Scripts", - "uri":"modelarts_23_0172.html", + "uri":"inference-modelarts-0078.html", "doc_type":"usermanual", - "p_code":"", - "code":"189" + "p_code":"222", + "code":"227" }, { - "desc":"TensorFlow has two types of APIs: Keras and tf. Keras and tf use different code for training and saving models, but the same code for inference.Inference code must be inh", + "desc":"There are two types of TensorFlow APIs, Keras and tf. They use different code for training and saving models, but the same code for inference.In the model inference code ", "product_code":"modelarts", "title":"TensorFlow", - "uri":"modelarts_23_0173.html", + "uri":"inference-modelarts-0079.html", "doc_type":"usermanual", - "p_code":"189", - "code":"190" + "p_code":"227", + "code":"228" }, { - "desc":"Inference code must be inherited from the BaseService class. For details about the import statements of different types of parent model classes, see Table 1.", - "product_code":"modelarts", - "title":"TensorFlow 2.1", - "uri":"modelarts_23_0301.html", - "doc_type":"usermanual", - "p_code":"189", - "code":"191" - }, - { - "desc":"Inference code must be inherited from the BaseService class. For details about the import statements of different types of parent model classes, see Table 1.", + "desc":"In the model inference code file customize_service.py, add a child model class which inherits properties from its parent model class. For details about the import stateme", "product_code":"modelarts", "title":"PyTorch", - "uri":"modelarts_23_0175.html", + "uri":"inference-modelarts-0082.html", "doc_type":"usermanual", - "p_code":"189", - "code":"192" + "p_code":"227", + "code":"229" }, { "desc":"lenet_train_test.prototxt filelenet_solver.prototxt fileTrain the model.The caffemodel file is generated after model training. Rewrite the lenet_train_test.prototxt file ", "product_code":"modelarts", "title":"Caffe", - "uri":"modelarts_23_0176.html", + "uri":"inference-modelarts-0083.html", "doc_type":"usermanual", - "p_code":"189", - "code":"193" - }, - { - "desc":"Before training, download the iris.csv dataset, decompress it, and upload it to the /home/ma-user/work/ directory of the notebook instance. Download the iris.csv dataset ", - "product_code":"modelarts", - "title":"XGBoost", - "uri":"modelarts_23_0177.html", - "doc_type":"usermanual", - "p_code":"189", - "code":"194" - }, - { - "desc":"After the model is saved, it must be uploaded to the OBS directory before being published. The config.json configuration and the customize_service.py inference code must ", - "product_code":"modelarts", - "title":"Spark", - "uri":"modelarts_23_0178.html", - "doc_type":"usermanual", - "p_code":"189", - "code":"195" - }, - { - "desc":"Before training, download the iris.csv dataset, decompress it, and upload it to the /home/ma-user/work/ directory of the notebook instance. Download the iris.csv dataset ", - "product_code":"modelarts", - "title":"Scikit Learn", - "uri":"modelarts_23_0179.html", - "doc_type":"usermanual", - "p_code":"189", - "code":"196" + "p_code":"227", + "code":"230" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", - "title":"Using Custom Images", - "uri":"en-us_topic_0000001799497932.html", - "doc_type":"usermanual", - "p_code":"", - "code":"197" - }, - { - "desc":"Frequently-used images are preset in ModelArts. However, if you have special requirements for the deep learning engine or development library, the preset images cannot me", - "product_code":"modelarts", - "title":"Introduction to Custom Images", - "uri":"modelarts_23_0084.html", - "doc_type":"usermanual", - "p_code":"197", - "code":"198" - }, - { - "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", - "product_code":"modelarts", - "title":"Using a Custom Image to Train Models (New-Version Training)", - "uri":"docker-modelarts_0017.html", - "doc_type":"usermanual", - "p_code":"197", - "code":"199" - }, - { - "desc":"When you use a locally developed model or training script to create a custom image, ensure that the custom image complies with the specifications defined by ModelArts.A c", - "product_code":"modelarts", - "title":"Specifications for Custom Images Used for Training Jobs", - "uri":"develop-modelarts-0079.html", - "doc_type":"usermanual", - "p_code":"199", - "code":"200" - }, - { - "desc":"To migrate an image to the new training management version, perform the following operations:Add the default user group ma-group (GID = 100) for the image of the new-vers", - "product_code":"modelarts", - "title":"Migrating an Image to ModelArts Training", - "uri":"docker-modelarts_0029.html", - "doc_type":"usermanual", - "p_code":"199", - "code":"201" - }, - { - "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", - "product_code":"modelarts", - "title":"Using a Custom Image to Create AI applications", - "uri":"modelarts_23_0218.html", - "doc_type":"usermanual", - "p_code":"197", - "code":"202" - }, - { - "desc":"When creating an image using locally developed models, ensure that they meet the specifications defined by ModelArts.Custom images cannot contain malicious code.A custom ", - "product_code":"modelarts", - "title":"Custom Image Specifications for Creating an AI Application", - "uri":"modelarts_23_0219.html", - "doc_type":"usermanual", - "p_code":"202", - "code":"203" - }, - { - "desc":"For AI engines that are not supported by ModelArts, you can import the models you compile to ModelArts from custom images for creating the AI applications. This section d", - "product_code":"modelarts", - "title":"Deploying an AI Application Created Using a Custom Image as a Service", - "uri":"modelarts_23_0270.html", - "doc_type":"usermanual", - "p_code":"202", - "code":"204" - }, - { - "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", - "product_code":"modelarts", - "title":"FAQ", - "uri":"docker-modelarts_0016.html", - "doc_type":"usermanual", - "p_code":"197", - "code":"205" - }, - { - "desc":"This section describes how to upload images to SWR.Log in to the SWR console.Click Create Organization in the upper right corner and enter an organization name to create ", - "product_code":"modelarts", - "title":"How Can I Upload Images to SWR?", - "uri":"docker-modelarts_0018.html", - "doc_type":"usermanual", - "p_code":"205", - "code":"206" - }, - { - "desc":"In a Dockerfile, use the ENV instruction to configure environment variables. For details, see Dockerfile reference.", - "product_code":"modelarts", - "title":"How Do I Configure Environment Variables for an Image?", - "uri":"docker-modelarts_0019.html", - "doc_type":"usermanual", - "p_code":"205", - "code":"207" - }, - { - "desc":"When using ModelArts for full-process AI development, you can use two different resource pools.Public Resource Pool: provides public large-scale computing clusters, which", - "product_code":"modelarts", - "title":"Resource Pools", - "uri":"modelarts_23_0076.html", - "doc_type":"usermanual", - "p_code":"", - "code":"208" - }, - { - "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", - "product_code":"modelarts", - "title":"Permissions Management", - "uri":"modelarts_23_0077.html", - "doc_type":"usermanual", - "p_code":"", - "code":"209" - }, - { - "desc":"A fine-grained policy is a set of permissions defining which operations on which cloud services can be performed. Each policy can define multiple permissions. After a pol", - "product_code":"modelarts", - "title":"Fine-grained Policy", - "uri":"modelarts_23_0078.html", - "doc_type":"usermanual", - "p_code":"209", - "code":"210" - }, - { - "desc":"A fine-grained policy consists of the policy version (the Version field) and statement (the Statement field).Version: Distinguishes between role-based access control (RBA", - "product_code":"modelarts", - "title":"Policy Language", - "uri":"modelarts_23_0079.html", - "doc_type":"usermanual", - "p_code":"209", - "code":"211" - }, - { - "desc":"If default policies cannot meet the requirements on fine-grained access control, you can create custom policies and assign the policies to the user group.You can create c", - "product_code":"modelarts", - "title":"Creating a Custom Policy", - "uri":"modelarts_23_0080.html", - "doc_type":"usermanual", - "p_code":"209", - "code":"212" - }, - { - "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", - "product_code":"modelarts", - "title":"Monitoring", + "title":"ModelArts Monitoring on Cloud Eye", "uri":"modelarts_23_0186.html", "doc_type":"usermanual", - "p_code":"", - "code":"213" + "p_code":"201", + "code":"231" }, { "desc":"The cloud service platform provides Cloud Eye to help you better understand the status of your ModelArts real-time services and models. You can use Cloud Eye to automatic", @@ -1922,8 +2084,8 @@ "title":"ModelArts Metrics", "uri":"modelarts_23_0187.html", "doc_type":"usermanual", - "p_code":"213", - "code":"214" + "p_code":"231", + "code":"232" }, { "desc":"Setting alarm rules allows you to customize the monitored objects and notification policies so that you can know the status of ModelArts real-time services and models in ", @@ -1931,8 +2093,8 @@ "title":"Setting Alarm Rules", "uri":"modelarts_23_0188.html", "doc_type":"usermanual", - "p_code":"213", - "code":"215" + "p_code":"231", + "code":"233" }, { "desc":"Cloud Eye on the cloud service platform monitors the status of ModelArts real-time services and model loads. You can obtain the monitoring metrics of each ModelArts real-", @@ -1940,44 +2102,323 @@ "title":"Viewing Monitoring Metrics", "uri":"modelarts_23_0189.html", "doc_type":"usermanual", - "p_code":"213", - "code":"216" + "p_code":"231", + "code":"234" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", - "title":"Audit Logs", - "uri":"modelarts_23_0249.html", + "title":"Using Custom Images", + "uri":"modelarts_77_0152.html", "doc_type":"usermanual", "p_code":"", - "code":"217" + "code":"235" }, { - "desc":"With CTS, you can record operations associated with ModelArts for later query, audit, and backtrack operations.CTS has been enabled. For details, see Enabling CTS", + "desc":"Frequently-used images are preset in ModelArts. However, if you have special requirements for the deep learning engine or development library, the preset images cannot me", "product_code":"modelarts", - "title":"Key Operations Recorded by CTS", - "uri":"modelarts_23_0250.html", + "title":"Introduction to Custom Images", + "uri":"modelarts_23_0084.html", "doc_type":"usermanual", - "p_code":"217", - "code":"218" + "p_code":"235", + "code":"236" }, { - "desc":"After CTS is enabled, CTS starts recording operations related to ModelArts. The CTS management console stores the last seven days of operation records. This section descr", + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", - "title":"Viewing Audit Logs", - "uri":"modelarts_23_0251.html", + "title":"Using a Custom Image to Train Models (New-Version Training)", + "uri":"docker-modelarts_0017.html", "doc_type":"usermanual", - "p_code":"217", - "code":"219" + "p_code":"235", + "code":"237" + }, + { + "desc":"When you use a locally developed model or training script to create a custom image, ensure that the custom image complies with the specifications defined by ModelArts.A c", + "product_code":"modelarts", + "title":"Specifications for Custom Images Used for Training Jobs", + "uri":"develop-modelarts-0079.html", + "doc_type":"usermanual", + "p_code":"237", + "code":"238" + }, + { + "desc":"To migrate an image to the new training management version, perform the following operations:Add the default user group ma-group (GID = 100) for the image of the new-vers", + "product_code":"modelarts", + "title":"Migrating an Image to ModelArts Training", + "uri":"docker-modelarts_0029.html", + "doc_type":"usermanual", + "p_code":"237", + "code":"239" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Using a Custom Image to Create AI applications", + "uri":"modelarts_23_0218.html", + "doc_type":"usermanual", + "p_code":"235", + "code":"240" + }, + { + "desc":"When creating an image using locally developed models, ensure that they meet the specifications defined by ModelArts.Custom images cannot contain malicious code.A custom ", + "product_code":"modelarts", + "title":"Custom Image Specifications for Creating an AI Application", + "uri":"modelarts_23_0219.html", + "doc_type":"usermanual", + "p_code":"240", + "code":"241" + }, + { + "desc":"For AI engines that are not supported by ModelArts, you can import the models you compile to ModelArts from custom images for creating the AI applications. This section d", + "product_code":"modelarts", + "title":"Deploying an AI Application Created Using a Custom Image as a Service", + "uri":"modelarts_23_0270.html", + "doc_type":"usermanual", + "p_code":"240", + "code":"242" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"FAQ", + "uri":"docker-modelarts_0016.html", + "doc_type":"usermanual", + "p_code":"235", + "code":"243" + }, + { + "desc":"This section describes how to upload images to SWR.Log in to the SWR console.Click Create Organization in the upper right corner and enter an organization name to create ", + "product_code":"modelarts", + "title":"How Can I Upload Images to SWR?", + "uri":"docker-modelarts_0018.html", + "doc_type":"usermanual", + "p_code":"243", + "code":"244" + }, + { + "desc":"In a Dockerfile, use the ENV instruction to configure environment variables. For details, see Dockerfile reference.", + "product_code":"modelarts", + "title":"How Do I Configure Environment Variables for an Image?", + "uri":"docker-modelarts_0019.html", + "doc_type":"usermanual", + "p_code":"243", + "code":"245" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Resource Management", + "uri":"modelarts_77_0150.html", + "doc_type":"usermanual", + "p_code":"", + "code":"246" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"New-Version Elastic Clusters", + "uri":"resmgmt-modelarts_0001.html", + "doc_type":"usermanual", + "p_code":"246", + "code":"247" + }, + { + "desc":"ModelArts dedicated resource pools have been upgraded. In the new system, there are only unified ModelArts dedicated resource pools, which are no longer classified as the", + "product_code":"modelarts", + "title":"Comprehensive Upgrades to ModelArts Resource Pool Management Functions", + "uri":"resmgmt-modelarts_0002.html", + "doc_type":"usermanual", + "p_code":"247", + "code":"248" + }, + { + "desc":"When using ModelArts for AI development, you can use either of the following resource pools:Dedicated Resource Pool: provides exclusive compute resources, which can be us", + "product_code":"modelarts", + "title":"Resource Pool", + "uri":"resmgmt-modelarts_0003.html", + "doc_type":"usermanual", + "p_code":"247", + "code":"249" + }, + { + "desc":"This section describes how to create a dedicated resource pool.Log in to the ModelArts management console. In the navigation pane, choose Dedicated Resource Pools > Elast", + "product_code":"modelarts", + "title":"Creating a Resource Pool", + "uri":"resmgmt-modelarts_0004.html", + "doc_type":"usermanual", + "p_code":"247", + "code":"250" + }, + { + "desc":"Log in to the ModelArts management console. In the navigation pane, choose Dedicated Resource Pools > Elastic Cluster.In the resource pool list, click a resource pool to ", + "product_code":"modelarts", + "title":"Viewing Details About a Resource Pool", + "uri":"resmgmt-modelarts_0005.html", + "doc_type":"usermanual", + "p_code":"247", + "code":"251" + }, + { + "desc":"The demand for resources in a dedicated resource pool may change due to the changes of AI development services. In this case, you can add or delete nodes in your dedicate", + "product_code":"modelarts", + "title":"Resizing a Resource Pool", + "uri":"resmgmt-modelarts_0006.html", + "doc_type":"usermanual", + "p_code":"247", + "code":"252" + }, + { + "desc":"ModelArts supports many types of jobs. Some of them can run in dedicated resource pools, including training jobs, inference services, and notebook development environment", + "product_code":"modelarts", + "title":"Changing Job Types Supported by a Resource Pool", + "uri":"resmgmt-modelarts_0008.html", + "doc_type":"usermanual", + "p_code":"247", + "code":"253" + }, + { + "desc":"If GPUs or Ascend resources are used in a dedicated resource pool, you may need to customize GPU or Ascend drivers. ModelArts allows you to upgrade GPU or Ascend drivers ", + "product_code":"modelarts", + "title":"Upgrading a Resource Pool Driver", + "uri":"resmgmt-modelarts_0009.html", + "doc_type":"usermanual", + "p_code":"247", + "code":"254" + }, + { + "desc":"If a dedicated resource pool is no longer needed for AI service development, you can delete the resource pool to release resources.After a dedicated resource pool is dele", + "product_code":"modelarts", + "title":"Deleting a Resource Pool", + "uri":"resmgmt-modelarts_0010.html", + "doc_type":"usermanual", + "p_code":"247", + "code":"255" + }, + { + "desc":"Log in to the ModelArts management console. In the navigation pane, choose Dedicated Resource Pools > Elastic Cluster.Click Failure Records on the right of Create. On the", + "product_code":"modelarts", + "title":"Abnormal Status of a Dedicated Resource Pool", + "uri":"resmgmt-modelarts_0011.html", + "doc_type":"usermanual", + "p_code":"247", + "code":"256" + }, + { + "desc":"ModelArts networks are used for interconnecting nodes in a ModelArts resource pool. You can only configure the name and CIDR block for a network. To ensure that there is ", + "product_code":"modelarts", + "title":"ModelArts Network", + "uri":"resmgmt-modelarts_0012.html", + "doc_type":"usermanual", + "p_code":"247", + "code":"257" + }, + { + "desc":"When using ModelArts for full-process AI development, you can use two different resource pools.Public Resource Pool: provides public large-scale computing clusters, which", + "product_code":"modelarts", + "title":"Old-Version Elastic Clusters", + "uri":"modelarts_23_0076.html", + "doc_type":"usermanual", + "p_code":"246", + "code":"258" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Permissions Management", + "uri":"modelarts_77_0153.html", + "doc_type":"usermanual", + "p_code":"", + "code":"259" + }, + { + "desc":"ModelArts allows you to configure fine-grained permissions for refined management of resources and permissions. This is commonly used by large enterprises, but it is comp", + "product_code":"modelarts", + "title":"Basic Concepts", + "uri":"modelarts_24_0078.html", + "doc_type":"usermanual", + "p_code":"259", + "code":"260" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Permission Management Mechanisms", + "uri":"modelarts_24_0079.html", + "doc_type":"usermanual", + "p_code":"259", + "code":"261" + }, + { + "desc":"This section describes the IAM permission configurations for all ModelArts functions.If no fine-grained authorization policy is configured for a user created by the admin", + "product_code":"modelarts", + "title":"IAM", + "uri":"modelarts_24_0080.html", + "doc_type":"usermanual", + "p_code":"261", + "code":"262" + }, + { + "desc":"Function Dependency PoliciesWhen using ModelArts to develop algorithms or manage training jobs, you are required to use other Cloud services. For example, before submitti", + "product_code":"modelarts", + "title":"Agencies and Dependencies", + "uri":"modelarts_24_0081.html", + "doc_type":"usermanual", + "p_code":"261", + "code":"263" + }, + { + "desc":"ModelArts allows you to create multiple workspaces to develop algorithms and manage and deploy models for different service objectives. In this way, the development outpu", + "product_code":"modelarts", + "title":"Workspace", + "uri":"modelarts_24_0082.html", + "doc_type":"usermanual", + "p_code":"261", + "code":"264" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Configuration Practices in Typical Scenarios", + "uri":"modelarts_24_0084.html", + "doc_type":"usermanual", + "p_code":"259", + "code":"265" + }, + { + "desc":"Certain ModelArts functions require access to Object Storage Service (OBS), Software Repository for Container (SWR), and Intelligent EdgeFabric (IEF). Before using ModelA", + "product_code":"modelarts", + "title":"Assigning Permissions to Individual Users for Using ModelArts", + "uri":"modelarts_24_0085.html", + "doc_type":"usermanual", + "p_code":"265", + "code":"266" + }, + { + "desc":"In small- and medium-sized teams, administrators need to globally control ModelArts resources, and developers only need to focus on their own instances. By default, a dev", + "product_code":"modelarts", + "title":"Separately Assigning Permissions to Administrators and Developers", + "uri":"modelarts_24_0093.html", + "doc_type":"usermanual", + "p_code":"265", + "code":"267" + }, + { + "desc":"This section describes how to control the ModelArts permissions of a user so that the user is not allowed to use a public resource pool to create training jobs, create no", + "product_code":"modelarts", + "title":"Prohibiting a User from Using a Public Resource Pool", + "uri":"modelarts_24_0097.html", + "doc_type":"usermanual", + "p_code":"265", + "code":"268" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", "title":"FAQs", - "uri":"modelarts_05_0000.html", + "uri":"modelarts_77_0154.html", "doc_type":"usermanual", "p_code":"", - "code":"220" + "code":"269" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -1985,8 +2426,8 @@ "title":"General Issues", "uri":"modelarts_05_0014.html", "doc_type":"usermanual", - "p_code":"220", - "code":"221" + "p_code":"269", + "code":"270" }, { "desc":"ModelArts is a one-stop AI development platform geared toward developers and data scientists of all skill levels. It enables you to rapidly build, train, and deploy model", @@ -1994,8 +2435,8 @@ "title":"What Is ModelArts?", "uri":"modelarts_05_0001.html", "doc_type":"usermanual", - "p_code":"221", - "code":"222" + "p_code":"270", + "code":"271" }, { "desc":"ModelArts uses Object Storage Service (OBS) to securely and reliably store data and models at low costs. For more details, see Object Storage Service Console Operation Gu", @@ -2003,8 +2444,17 @@ "title":"What Are the Relationships Between ModelArts and Other Services?", "uri":"modelarts_05_0003.html", "doc_type":"usermanual", - "p_code":"221", - "code":"223" + "p_code":"270", + "code":"272" + }, + { + "desc":"Deep Learning Service (DLS) is a one-stop deep learning platform . With various optimized neural network models, DLS allows you to easily implement model training and eva", + "product_code":"modelarts", + "title":"What Are the Differences Between ModelArts and DLS?", + "uri":"modelarts_05_0052.html", + "doc_type":"usermanual", + "p_code":"270", + "code":"273" }, { "desc":"Log in to the console, enter the My Credentials page, and choose Access Keys > Create Access Key.In the Create Access Key dialog box that is displayed, use the login pass", @@ -2012,8 +2462,8 @@ "title":"How Do I Obtain an Access Key?", "uri":"modelarts_05_0004.html", "doc_type":"usermanual", - "p_code":"221", - "code":"224" + "p_code":"270", + "code":"274" }, { "desc":"Before using ModelArts to develop AI models, data needs to be uploaded to an OBS bucket. You can log in to the OBS console to create an OBS bucket, create a folder in it,", @@ -2021,8 +2471,62 @@ "title":"How Do I Upload Data to OBS?", "uri":"modelarts_05_0013.html", "doc_type":"usermanual", - "p_code":"221", - "code":"225" + "p_code":"270", + "code":"275" + }, + { + "desc":"An AK and SK form a key pair required for accessing OBS. Each SK corresponds to a specific AK, and each AK corresponds to a specific user. If the system displays a messag", + "product_code":"modelarts", + "title":"What Do I Do If the System Displays a Message Indicating that the AK/SK Pair Is Unavailable?", + "uri":"modelarts_05_0019.html", + "doc_type":"usermanual", + "p_code":"270", + "code":"276" + }, + { + "desc":"For more advanced users, ModelArts provides the notebook creation function of DevEnviron for code development. It allows the users to create training tasks with large vol", + "product_code":"modelarts", + "title":"How Do I Use ModelArts to Train Models Based on Structured Data?", + "uri":"modelarts_05_0041.html", + "doc_type":"usermanual", + "p_code":"270", + "code":"277" + }, + { + "desc":"If an OBS directory needs to be specified for using ModelArts functions, such as creating training jobs and datasets, ensure that the OBS bucket and ModelArts are in the ", + "product_code":"modelarts", + "title":"How Do I Check Whether ModelArts and an OBS Bucket Are in the Same Region?", + "uri":"modelarts_05_0073.html", + "doc_type":"usermanual", + "p_code":"270", + "code":"278" + }, + { + "desc":"To view all files stored in OBS when using notebook instances or training jobs, use either of the following methods:OBS consoleLog in to OBS console using the current acc", + "product_code":"modelarts", + "title":"How Do I View All Files Stored in OBS on ModelArts?", + "uri":"modelarts_05_0077.html", + "doc_type":"usermanual", + "p_code":"270", + "code":"279" + }, + { + "desc":"Message \"Error: stat:403\" is displayed when I use mox.file.copy_parallel in ModelArts to perform operations on OBS.ModelArts uses an AK/SK for authentication globally, an", + "product_code":"modelarts", + "title":"Why Error: 403 Forbidden Is Displayed When I Perform Operations on OBS?", + "uri":"modelarts_06_0021.html", + "doc_type":"usermanual", + "p_code":"270", + "code":"280" + }, + { + "desc":"Datasets of ModelArts and data in specific data storage locations are stored in OBS.", + "product_code":"modelarts", + "title":"Where Are Datasets of ModelArts Stored in a Container?", + "uri":"modelarts_05_0079.html", + "doc_type":"usermanual", + "p_code":"270", + "code":"281" }, { "desc":"The AI frameworks and versions supported by ModelArts vary slightly based on the development environment notebook, training jobs, and model inference (AI application mana", @@ -2030,89 +2534,26 @@ "title":"Which AI Frameworks Does ModelArts Support?", "uri":"modelarts_05_0128.html", "doc_type":"usermanual", - "p_code":"221", - "code":"226" + "p_code":"270", + "code":"282" }, { - "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "desc":"ModelArts training includes ExeML, training management, and dedicated resource pools (for development/training).ModelArts inference includes AI application management and", "product_code":"modelarts", - "title":"ExeML", - "uri":"modelarts_05_0015.html", + "title":"What Are the Functions of ModelArts Training and Inference?", + "uri":"modelarts_05_0136.html", "doc_type":"usermanual", - "p_code":"220", - "code":"227" + "p_code":"270", + "code":"283" }, { - "desc":"ExeML is the process of automating model design, parameter tuning, and model training, compression, and deployment with the labeled data. The process is free of coding an", + "desc":"After a model with multiple labels is trained and deployed as a real-time service, all the labels are identified. If only one type of label needs to be identified, train ", "product_code":"modelarts", - "title":"What Is ExeML?", - "uri":"modelarts_05_0002.html", + "title":"Can AI-assisted Identification of ModelArts Identify a Specific Label?", + "uri":"modelarts_06_0001.html", "doc_type":"usermanual", - "p_code":"227", - "code":"228" - }, - { - "desc":"Image classification is an image processing method that separates different classes of targets according to the features reflected in the images. With quantitative analys", - "product_code":"modelarts", - "title":"What Are Image Classification and Object Detection?", - "uri":"modelarts_05_0018.html", - "doc_type":"usermanual", - "p_code":"227", - "code":"229" - }, - { - "desc":"The Train button turns to be available when the training images for an image classification project are classified into at least two categories, and each category contain", - "product_code":"modelarts", - "title":"What Should I Do When the Train Button Is Unavailable After I Create an Image Classification Project and Label the Images?", - "uri":"modelarts_05_0005.html", - "doc_type":"usermanual", - "p_code":"227", - "code":"230" - }, - { - "desc":"Yes. You can add multiple labels to an image.", - "product_code":"modelarts", - "title":"Can I Add Multiple Labels to an Image for an Object Detection Project?", - "uri":"modelarts_05_0006.html", - "doc_type":"usermanual", - "p_code":"227", - "code":"231" - }, - { - "desc":"Models created in ExeML are deployed as real-time services. You can add images or compile code to test the services, as well as call the APIs using the URLs.After model d", - "product_code":"modelarts", - "title":"What Type of Service Is Deployed in ExeML?", - "uri":"modelarts_05_0008.html", - "doc_type":"usermanual", - "p_code":"227", - "code":"232" - }, - { - "desc":"Images in JPG, JPEG, PNG, or BMP format are supported.", - "product_code":"modelarts", - "title":"What Formats of Images Are Supported by Object Detection or Image Classification Projects?", - "uri":"modelarts_05_0010.html", - "doc_type":"usermanual", - "p_code":"227", - "code":"233" - }, - { - "desc":"If an image classification or object detection algorithm of ExeML is used, after the labeled data is trained, the training result is an image error. Table 1 lists solutio", - "product_code":"modelarts", - "title":"What Do I Do If an Image Error Occurred During Model Training Using ExeML?", - "uri":"modelarts_05_0502.html", - "doc_type":"usermanual", - "p_code":"227", - "code":"234" - }, - { - "desc":"ModelArts ExeML supports image classification, object detection, predictive analytics, sound classification, and text classification projects. Up to 100 ExeML projects ca", - "product_code":"modelarts", - "title":"Is There a Limit on the Number of ExeML Projects That Can Be Created?", - "uri":"modelarts_05_0179.html", - "doc_type":"usermanual", - "p_code":"227", - "code":"235" + "p_code":"270", + "code":"284" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -2120,71 +2561,8 @@ "title":"Data Management", "uri":"modelarts_05_0101.html", "doc_type":"usermanual", - "p_code":"220", - "code":"236" - }, - { - "desc":"Failed to use the manifest file of the published dataset to import data again.Data has been changed in the OBS directory of the published dataset, for example, images hav", - "product_code":"modelarts", - "title":"Why Does Data Fail to Be Imported Using the Manifest File?", - "uri":"modelarts_05_0103.html", - "doc_type":"usermanual", - "p_code":"236", - "code":"237" - }, - { - "desc":"Images in a created dataset cannot be displayed during labeling, and they cannot be viewed by clicking them. Alternatively, the system displays a message indicating that ", - "product_code":"modelarts", - "title":"What Do I Do If Images in a Dataset Cannot Be Displayed?", - "uri":"modelarts_05_0125.html", - "doc_type":"usermanual", - "p_code":"236", - "code":"238" - }, - { - "desc":"The possible cause is that the storage class of the target OBS bucket is incorrect. In this case, select a bucket of the standard storage class to import data.", - "product_code":"modelarts", - "title":"What Do I Do If Importing a Dataset Failed?", - "uri":"modelarts_05_3148.html", - "doc_type":"usermanual", - "p_code":"236", - "code":"239" - }, - { - "desc":"The ModelArts console provides data visualization capabilities, which allows you to view detailed data and labeling information on the console. To learn more about the pa", - "product_code":"modelarts", - "title":"Where Are Labeling Results Stored?", - "uri":"modelarts_05_0193.html", - "doc_type":"usermanual", - "p_code":"236", - "code":"240" - }, - { - "desc":"After being published, the labeling information and data in ModelArts datasets are stored as manifest files in the OBS path set for Output Dataset Path.To obtain the OBS ", - "product_code":"modelarts", - "title":"How Do I Download Labeling Results to a Local PC?", - "uri":"modelarts_05_0194.html", - "doc_type":"usermanual", - "p_code":"236", - "code":"241" - }, - { - "desc":"Ensure that the created bucket and ModelArts are in the same region. Additionally, the bucket is not encrypted. ModelArts does not support encrypted OBS buckets.", - "product_code":"modelarts", - "title":"Why Is My Newly Created Bucket Unavailable?", - "uri":"modelarts_05_0509.html", - "doc_type":"usermanual", - "p_code":"236", - "code":"242" - }, - { - "desc":"The version list can be zoomed in or out. Zoom out the page before searching.Click the name of the target dataset to go to the dataset overview page. Then, zoom out the V", - "product_code":"modelarts", - "title":"Why Is My New Dataset Version Unavailable in Versions?", - "uri":"modelarts_05_0511.html", - "doc_type":"usermanual", - "p_code":"236", - "code":"243" + "p_code":"269", + "code":"285" }, { "desc":"For data management, there are limits on the image size when you upload images to the datasets whose labeling type is object detection or image classification. The size o", @@ -2192,26 +2570,323 @@ "title":"Are There Size Limits for Images to be Uploaded?", "uri":"modelarts_05_0102.html", "doc_type":"usermanual", - "p_code":"236", - "code":"244" + "p_code":"285", + "code":"286" + }, + { + "desc":"Create a parent directory in an OBS bucket, in the directory add the same number of folders as that of datasets, export one dataset to one folder, and use the parent dire", + "product_code":"modelarts", + "title":"How Do I Integrate Multiple Object Detection Datasets into One Dataset?", + "uri":"modelarts_05_3146.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"287" + }, + { + "desc":"Table datasets cannot be labeled. They are suitable for processing structured data such as tables. Table files are in CSV format. You can preview up to 100 data records i", + "product_code":"modelarts", + "title":"Can a Table Dataset Be Labeled?", + "uri":"modelarts_05_3149.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"288" + }, + { + "desc":"ModelArts allows you to import data by importing datasets. Locally labeled data can be imported from an OBS directory or the manifest file. After the import, you can labe", + "product_code":"modelarts", + "title":"What Do I Do to Import Locally Labeled Data to ModelArts?", + "uri":"modelarts_05_0139.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"289" + }, + { + "desc":"Failed to use the manifest file of the published dataset to import data again.Data has been changed in the OBS directory of the published dataset, for example, images hav", + "product_code":"modelarts", + "title":"Why Does Data Fail to Be Imported Using the Manifest File?", + "uri":"modelarts_05_0103.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"290" + }, + { + "desc":"After being published, the labeling information and data in ModelArts datasets are stored as manifest files in the OBS path set for Output Dataset Path.To obtain the OBS ", + "product_code":"modelarts", + "title":"How Do I Download Labeling Results to a Local PC?", + "uri":"modelarts_05_0194.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"291" + }, + { + "desc":"The possible causes are as follows:All dataset data has been labeled. An email can be sent to team members only if there is unlabeled data in the dataset when the team la", + "product_code":"modelarts", + "title":"Why Cannot Team Members Receive Emails for a Team Labeling Task?", + "uri":"modelarts_05_0195.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"292" + }, + { + "desc":"Multiple accounts (annotators) are allowed to concurrently label one dataset. However, if multiple annotators concurrently label one image, only the labeling of the last ", + "product_code":"modelarts", + "title":"Can Two Accounts Concurrently Label One Dataset?", + "uri":"modelarts_05_3205.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"293" + }, + { + "desc":"No annotator cannot be deleted from a labeling team with labeling tasks assigned.The labeling result of an annotator can be synchronized to the overall labeling result on", + "product_code":"modelarts", + "title":"Can I Delete an Annotator from a Labeling Team with a Labeling Task Assigned? What Is the Impact on the Labeling Result After Deletion? If the Annotator Cannot Be Deleted, Can I Separate the Annotator's Labeling Result?", + "uri":"modelarts_05_3191.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"294" + }, + { + "desc":"Hard examples are samples that are difficult to identify. Only image classification and object detection support hard examples.", + "product_code":"modelarts", + "title":"How Do I Define a Hard Example in Data Labeling? Which Samples Are Identified as Hard Examples?", + "uri":"modelarts_05_3193.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"295" + }, + { + "desc":"Yes.For an object detection dataset, you can add multiple labeling boxes and labels to an image during labeling. Note that the labeling boxes cannot extend beyond the ima", + "product_code":"modelarts", + "title":"Can I Add Multiple Labeling Boxes to an Object Detection Dataset Image?", + "uri":"modelarts_05_0251.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"296" + }, + { + "desc":"Datasets cannot be merged.However, you can perform the following operations to merge the data of two datasets into one dataset.For example, to merge datasets A and B, do ", + "product_code":"modelarts", + "title":"How Do I Merge Two Datasets?", + "uri":"modelarts_05_0254.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"297" + }, + { + "desc":"There are rotation angles of certain images, and the rules of processing such images vary depending on browsers. The following figures show compatibility with browsers.L ", + "product_code":"modelarts", + "title":"Why Are Images Displayed in Different Angles Under the Same Account?", + "uri":"modelarts_05_0367.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"298" + }, + { + "desc":"After auto labeling is complete, confirm the labeled data. If you add new data before confirming the labeled data, all unlabeled data will be automatically labeled again.", + "product_code":"modelarts", + "title":"Do I Need to Train Data Again If New Data Is Added After Auto Labeling Is Complete?", + "uri":"modelarts_05_0368.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"299" + }, + { + "desc":"Take the Google Chrome browser as an example. When an image is labeled for the first time, the system displays a message in the upper right corner, indicating that the la", + "product_code":"modelarts", + "title":"Why Does the System Display a Message Indicating My Label Fails to Save on ModelArts?", + "uri":"modelarts_05_0373.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"300" + }, + { + "desc":"After a model is trained with multiple labels and deployed as a real-time service, all the labels are identified. If only one type of label needs to be identified, train ", + "product_code":"modelarts", + "title":"Can One Label By Identified Among Multiple Labels?", + "uri":"modelarts_05_0375.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"301" + }, + { + "desc":"After data amplification is enabled, images newly added in image classification datasets cannot be automatically labeled, but those added in object detection datasets can", + "product_code":"modelarts", + "title":"Why Are Newly Added Images Not Automatically Labeled After Data Amplification Is Enabled?", + "uri":"modelarts_05_0504.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"302" }, { "desc":"If the issue occurs, check the video format. Only MP4 videos can be displayed and played.", "product_code":"modelarts", "title":"Why Cannot Videos in a Video Dataset Be Displayed or Played?", - "uri":"modelarts_05_0505.html", + "uri":"modelarts_05_3194.html", "doc_type":"usermanual", - "p_code":"236", - "code":"245" + "p_code":"285", + "code":"303" + }, + { + "desc":"This issue occurs if automatic encryption is enabled in the OBS bucket. To resolve this issue, create an OBS bucket and upload data to it, or disable bucket encryption an", + "product_code":"modelarts", + "title":"Why All the Labeled Samples Stored in an OBS Bucket Are Displayed as Unlabeled in ModelArts After the Data Source Is Synchronized?", + "uri":"modelarts_05_3196.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"304" + }, + { + "desc":"YOLOv3 algorithms subscribed to in AI Gallery can use Soft-NMS to reduce overlapped bounding boxes. No official information has been released to show that YOLOv5 algorit", + "product_code":"modelarts", + "title":"How Do I Use Soft-NMS to Reduce Bounding Box Overlapping?", + "uri":"modelarts_05_3197.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"305" + }, + { + "desc":"The default labeling job is deleted. As a result, the labels are deleted.", + "product_code":"modelarts", + "title":"Why ModelArts Image Labels Are Lost?", + "uri":"modelarts_05_3198.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"306" + }, + { + "desc":"You are not allowed to manually add images to a training or validation dataset, but can only set a training and validation ratio. Then, the system randomly allocates the ", + "product_code":"modelarts", + "title":"How Do I Add Images to a Validation or Training Dataset?", + "uri":"modelarts_05_0506.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"307" + }, + { + "desc":"The functions provided ModelArts data management vary depending on the type of the dataset.", + "product_code":"modelarts", + "title":"What ModelArts Data Management Can Be Used for?", + "uri":"modelarts_05_0508.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"308" + }, + { + "desc":"Verify that your created bucket and ModelArts are in the same region.Check the region where the created OBS bucket is located.Log in to the .On the Object Storage Service", + "product_code":"modelarts", + "title":"Why Cannot I Find My Created OBS Bucket After I Select an OBS Path in ModelArts?", + "uri":"modelarts_05_0509.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"309" + }, + { + "desc":"The datasets of the new version are not displayed on the dataset page of the old version. To view the datasets of the new version, switch to the dataset page of the new v", + "product_code":"modelarts", + "title":"Why Cannot I Find My Newly Created Dataset?", + "uri":"modelarts_05_3140.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"310" + }, + { + "desc":"The quota for the datasets of both the old and new versions is 100. On the dataset page of the new version, all created datasets are displayed. However, the dataset page ", + "product_code":"modelarts", + "title":"What Do I Do If the Database Quota Is Incorrect?", + "uri":"modelarts_05_3141.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"311" + }, + { + "desc":"When you publish a dataset, only the dataset of the image classification, object detection, text classification, or sound classification type supports data splitting.By d", + "product_code":"modelarts", + "title":"How Do I Split a Dataset?", + "uri":"modelarts_05_3144.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"312" + }, + { + "desc":"Check the format of the data downloaded from AI Gallery. For example, compressed packages and Excel files will be ignored. The following table lists the supported formats", + "product_code":"modelarts", + "title":"Why Is There No Sample in the ModelArts Dataset Downloaded from AI Gallery and Then an OBS Bucket?", + "uri":"modelarts_05_0512.html", + "doc_type":"usermanual", + "p_code":"285", + "code":"313" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", - "title":"Notebook", - "uri":"modelarts_05_0067.html", + "title":"Notebook (New Version)", + "uri":"modelarts_05_0020.html", "doc_type":"usermanual", - "p_code":"220", - "code":"246" + "p_code":"269", + "code":"314" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Constraints", + "uri":"modelarts_05_0185.html", + "doc_type":"usermanual", + "p_code":"314", + "code":"315" + }, + { + "desc":"For security purposes, notebook instances do not support sudo privilege escalation.", + "product_code":"modelarts", + "title":"Is sudo Privilege Escalation Supported?", + "uri":"modelarts_05_0111.html", + "doc_type":"usermanual", + "p_code":"315", + "code":"316" + }, + { + "desc":"Notebook instances in DevEnviron support the Keras engine. The Keras engine is not supported in job training and model deployment (inference).Keras is an advanced neural ", + "product_code":"modelarts", + "title":"Is the Keras Engine Supported?", + "uri":"modelarts_05_0042.html", + "doc_type":"usermanual", + "p_code":"315", + "code":"317" + }, + { + "desc":"The Python 2 environment of ModelArts supports Caffe, but the Python 3 environment does not support it.", + "product_code":"modelarts", + "title":"Does ModelArts Support the Caffe Engine?", + "uri":"modelarts_05_0084.html", + "doc_type":"usermanual", + "p_code":"315", + "code":"318" + }, + { + "desc":"No. MoXing can be used only on ModelArts.", + "product_code":"modelarts", + "title":"Can I Install MoXing in a Local Environment?", + "uri":"modelarts_05_0058.html", + "doc_type":"usermanual", + "p_code":"315", + "code":"319" + }, + { + "desc":"The notebook instances of the new version can be remotely logged in. To do so, enable remote SSH when you create the notebook instances. Remotely log in to a notebook ins", + "product_code":"modelarts", + "title":"Can Notebook Instances Be Remotely Logged In?", + "uri":"modelarts_05_0238.html", + "doc_type":"usermanual", + "p_code":"315", + "code":"320" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Data Upload or Download", + "uri":"modelarts_05_0186.html", + "doc_type":"usermanual", + "p_code":"314", + "code":"321" }, { "desc":"In a notebook instance, you can call the ModelArts MoXing API or SDK to exchange data with OBS for uploading a file to OBS or downloading a file from OBS to the notebook ", @@ -2219,17 +2894,17 @@ "title":"How Do I Upload a File from a Notebook Instance to OBS or Download a File from OBS to a Notebook Instance?", "uri":"modelarts_05_0024.html", "doc_type":"usermanual", - "p_code":"246", - "code":"247" + "p_code":"321", + "code":"322" }, { - "desc":"Log in to the ModelArts management console, and choose DevEnviron > Notebooks.In the notebook list, click Open in the Operation column of the target notebook instance to ", + "desc":"Large files (files larger than 100 MB)Use OBS to upload large files. To do so, use OBS Browser to upload a local file to an OBS bucket and use ModelArts SDK to download t", "product_code":"modelarts", - "title":"How Do I Enable the Terminal Function in DevEnviron of ModelArts?", - "uri":"modelarts_05_0071.html", + "title":"How Do I Import Large Files to a Notebook Instance?", + "uri":"modelarts_05_0057.html", "doc_type":"usermanual", - "p_code":"246", - "code":"248" + "p_code":"321", + "code":"323" }, { "desc":"If you use OBS to store the notebook instance, after you click upload, the data is directly uploaded to the target OBS path, that is, the OBS path specified when the note", @@ -2237,17 +2912,404 @@ "title":"Where Will the Data Be Uploaded to?", "uri":"modelarts_05_0045.html", "doc_type":"usermanual", - "p_code":"246", - "code":"249" + "p_code":"321", + "code":"324" }, { - "desc":"/cache is a temporary directory and will not be saved. After an instance using OBS storage is stopped, data in the ~work directory will be deleted. After a notebook insta", + "desc":"Data cannot be directly copied from notebook A to notebook B. To copy data, do as follows:Upload the data of notebook A to OBS.Download data from OBS to notebook B.For de", + "product_code":"modelarts", + "title":"How Do I Copy Data from Development Environment Notebook A to Notebook B?", + "uri":"modelarts_05_3172.html", + "doc_type":"usermanual", + "p_code":"321", + "code":"325" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Data Storage", + "uri":"modelarts_05_0187.html", + "doc_type":"usermanual", + "p_code":"314", + "code":"326" + }, + { + "desc":"OBS files cannot be renamed on the OBS console. To rename an OBS file, call a MoXing API in an existing or newly created notebook instance.The following shows an example:", + "product_code":"modelarts", + "title":"How Do I Rename an OBS File?", + "uri":"modelarts_05_0085.html", + "doc_type":"usermanual", + "p_code":"326", + "code":"327" + }, + { + "desc":"Temporary files are stored in the /cache directory and will not be saved after the notebook instance is stopped or restarted. Data stored in the /home/ma-user/work direct", "product_code":"modelarts", "title":"Do Files in /cache Still Exist After a Notebook Instance is Stopped or Restarted? How Do I Avoid a Restart?", "uri":"modelarts_05_0080.html", "doc_type":"usermanual", - "p_code":"246", - "code":"250" + "p_code":"326", + "code":"328" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Environment Configurations", + "uri":"modelarts_05_0188.html", + "doc_type":"usermanual", + "p_code":"314", + "code":"329" + }, + { + "desc":"Run the following command to view the CUDA version of the target notebook instance:The following shows an example.In the preceding example, the CUDA version is 10.2.", + "product_code":"modelarts", + "title":"How Do I Check the CUDA Version Used by a Notebook Instance?", + "uri":"modelarts_05_01651.html", + "doc_type":"usermanual", + "p_code":"329", + "code":"330" + }, + { + "desc":"Log in to the ModelArts management console, and choose DevEnviron > Notebooks.Create a notebook instance. When the instance is running, click Open in the Operation column", + "product_code":"modelarts", + "title":"How Do I Enable the Terminal Function in DevEnviron of ModelArts?", + "uri":"modelarts_05_0071.html", + "doc_type":"usermanual", + "p_code":"329", + "code":"331" + }, + { + "desc":"Multiple environments such as Jupyter and Python have been integrated into ModelArts notebook to support many frameworks, including TensorFlow, MindSpore, PyTorch, and Sp", + "product_code":"modelarts", + "title":"How Do I Install External Libraries in a Notebook Instance?", + "uri":"modelarts_05_0022.html", + "doc_type":"usermanual", + "p_code":"329", + "code":"332" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Notebook Instances", + "uri":"modelarts_05_0189.html", + "doc_type":"usermanual", + "p_code":"314", + "code":"333" + }, + { + "desc":"Troubleshoot the issue based on error code.If this error is reported when an IAM user creates an instance, the IAM user does not have the permissions to access the corres", + "product_code":"modelarts", + "title":"What Do I Do If I Cannot Access My Notebook Instance?", + "uri":"modelarts_05_0021.html", + "doc_type":"usermanual", + "p_code":"333", + "code":"334" + }, + { + "desc":"In the notebook instance, error message \"No Space left...\" is displayed after the pip install command is run.You are advised to run the pip install --no-cache ** command", + "product_code":"modelarts", + "title":"What Should I Do When the System Displays an Error Message Indicating that No Space Left After I Run the pip install Command?", + "uri":"modelarts_05_0044.html", + "doc_type":"usermanual", + "p_code":"333", + "code":"335" + }, + { + "desc":"After I run pip install in a notebook instance, the system displays error message \"ReadTimeoutError...\" or \"Read timed out...\".Run pip install --upgrade pip and then pip ", + "product_code":"modelarts", + "title":"What Do I Do If \"Read timed out\" Is Displayed After I Run pip install?", + "uri":"modelarts_05_0310.html", + "doc_type":"usermanual", + "p_code":"333", + "code":"336" + }, + { + "desc":"If the notebook instance can run the code but cannot save it, the error message \"save error\" is displayed when you save the file. In most cases, this error is caused by a", + "product_code":"modelarts", + "title":"What Do I Do If the Code Can Be Run But Cannot Be Saved, and the Error Message \"save error\" Is Displayed?", + "uri":"modelarts_05_0051.html", + "doc_type":"usermanual", + "p_code":"333", + "code":"337" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Code Execution", + "uri":"modelarts_05_0067.html", + "doc_type":"usermanual", + "p_code":"314", + "code":"338" + }, + { + "desc":"If a notebook instance fails to execute code, you can locate and rectify the fault as follows:If the execution of a cell is suspended or lasts for a long time (for exampl", + "product_code":"modelarts", + "title":"What Do I Do If a Notebook Instance Won't Run My Code?", + "uri":"modelarts_05_0059.html", + "doc_type":"usermanual", + "p_code":"338", + "code":"339" + }, + { + "desc":"The notebook instance breaks down during training code running due to insufficient memory caused by large data volume or excessive training layers.After this error occurs", + "product_code":"modelarts", + "title":"Why Does the Instance Break Down When dead kernel Is Displayed During Training Code Running?", + "uri":"modelarts_05_0050.html", + "doc_type":"usermanual", + "p_code":"338", + "code":"340" + }, + { + "desc":"The following error occurs when the training code is executed in a notebook:Parameters arch and code in setup.py have not been set to match the GPU compute power.For Tesl", + "product_code":"modelarts", + "title":"What Do I Do If cudaCheckError Occurs During Training?", + "uri":"modelarts_05_0167.html", + "doc_type":"usermanual", + "p_code":"338", + "code":"341" + }, + { + "desc":"If space is insufficient, use notebook instances of the EVS type.Upload code and data to an OBS bucket for the original notebook instance by referring to How Do I Upload ", + "product_code":"modelarts", + "title":"What Should I Do If DevEnviron Prompts Insufficient Space?", + "uri":"modelarts_05_0113.html", + "doc_type":"usermanual", + "p_code":"338", + "code":"342" + }, + { + "desc":"When opencv.imshow is used in a notebook instance, the notebook instance breaks down.The cv2.imshow function in OpenCV malfunctions in a client/server environment such as", + "product_code":"modelarts", + "title":"Why Does the Notebook Instance Break Down When opencv.imshow Is Used?", + "uri":"modelarts_05_0168.html", + "doc_type":"usermanual", + "p_code":"338", + "code":"343" + }, + { + "desc":"When a text file generated in Windows is used in a notebook instance, the text content cannot be read and an error message may be displayed indicating that the path canno", + "product_code":"modelarts", + "title":"Why Cannot the Path of a Text File Generated in Windows OS Be Found In a Notebook Instance?", + "uri":"modelarts_05_0169.html", + "doc_type":"usermanual", + "p_code":"338", + "code":"344" + }, + { + "desc":"When a file is saved in JupyterLab, an error message is displayed.A third-party plug-in has been installed on the browser, and the proxy intercepts the request. As a resu", + "product_code":"modelarts", + "title":"What Do I Do If Files Fail to Be Saved in JupyterLab?", + "uri":"modelarts_05_3145.html", + "doc_type":"usermanual", + "p_code":"338", + "code":"345" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Failures to Access the Development Environment Through VS Code", + "uri":"modelarts_05_0513.html", + "doc_type":"usermanual", + "p_code":"314", + "code":"346" + }, + { + "desc":"VS Code is not installed or the installed version is outdated.Download and install VS Code. (Windows users click Windows. Users of other operating systems click another O", + "product_code":"modelarts", + "title":"What Do I Do If the VS Code Window Is Not Displayed?", + "uri":"modelarts_05_3114.html", + "doc_type":"usermanual", + "p_code":"346", + "code":"347" + }, + { + "desc":"Establishing a remote SSH connection to an instance through VS Code failed.Close the displayed dialog box, view the error information in OUTPUT, and rectify the fault by ", + "product_code":"modelarts", + "title":"What Do I Do If Error Message \"Could not establish connection to xxx\" Is Displayed During a Remote Connection?", + "uri":"modelarts_05_3116.html", + "doc_type":"usermanual", + "p_code":"346", + "code":"348" + }, + { + "desc":"The local network is faulty. As a result, it takes a long time to automatically install the VS Code server remotely.Manually install the VS Code server.Replace ${commitID", + "product_code":"modelarts", + "title":"What Do I Do If the Connection to a Remote Development Environment Remains in \"Setting up SSH Host xxx: Downloading VS Code Server locally\" State for More Than 10 Minutes?", + "uri":"modelarts_05_3117.html", + "doc_type":"usermanual", + "p_code":"346", + "code":"349" + }, + { + "desc":"Downloading the VS Code server failed before, leading to residual data. As a result, new download cannot be performed.Method 1 (performed locally): Open the command panel", + "product_code":"modelarts", + "title":"What Do I Do If a Remote Connection Is in the Retry State?", + "uri":"modelarts_05_3118.html", + "doc_type":"usermanual", + "p_code":"346", + "code":"350" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"What Do I Do If Error Message \"The VS Code Server failed to start\" Is Displayed?", + "uri":"modelarts_05_3119.html", + "doc_type":"usermanual", + "p_code":"346", + "code":"351" + }, + { + "desc":"OrWhen VS Code attempts to access a notebook instance, the system always prompts you to select a certificate, and the message, excepting the title, consists of garbled ch", + "product_code":"modelarts", + "title":"What Do I Do If Error Message \"An SSH installation couldn't be found\" or \"Could not establish connection to instance xxx: 'ssh' ...\" Is Displayed?", + "uri":"modelarts_05_3123.html", + "doc_type":"usermanual", + "p_code":"346", + "code":"352" + }, + { + "desc":"OrAfter the notebook instance is restarted, its public key changes. The alarm is generated when OpenSSH detected the key change.Add -o StrictHostKeyChecking=no for remote", + "product_code":"modelarts", + "title":"What Do I Do If Error Message \"Host key verification failed\" or \"Port forwarding is disabled\" Is Displayed?", + "uri":"modelarts_05_3128.html", + "doc_type":"usermanual", + "p_code":"346", + "code":"353" + }, + { + "desc":"OrThe disk space of /home/ma-user/work is insufficient.Delete unnecessary files in /home/ma-user/work.", + "product_code":"modelarts", + "title":"What Do I Do If Error Message \"Failed to install the VS Code Server\" or \"tar: Error is not recoverable: exiting now\" Is Displayed?", + "uri":"modelarts_05_0304.html", + "doc_type":"usermanual", + "p_code":"346", + "code":"354" + }, + { + "desc":"After an SSH connection is set up through VS Code, no operation is performed for a long time and the window retains open. When the connection is used again, it is found t", + "product_code":"modelarts", + "title":"What Do I Do for an Automatically Disconnected VS Code Connection If No Operation Is Performed for a Long Time?", + "uri":"modelarts_05_3168.html", + "doc_type":"usermanual", + "p_code":"346", + "code":"355" + }, + { + "desc":"VS Code is automatically upgraded. As a result, download the new VS Code server to set up a new connection.Disable automatic VS Code upgrade. To do so, click Settings in ", + "product_code":"modelarts", + "title":"What Do I Do If It Takes a Long Time to Set Up a Remote Connection After VS Code Is Automatically Upgraded?", + "uri":"modelarts_05_3169.html", + "doc_type":"usermanual", + "p_code":"346", + "code":"356" + }, + { + "desc":"After MobaXterm is connected to a development environment, it is disconnected after a period of time.When MobaXterm is configured, SSH keepalive is not selected or Stop s", + "product_code":"modelarts", + "title":"What Can I Do If a Notebook Instance Is Frequently Disconnected or Stuck After I Use MobaXterm to Connect to the Notebook Instance in SSH Mode?", + "uri":"modelarts_05_3220.html", + "doc_type":"usermanual", + "p_code":"346", + "code":"357" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Others", + "uri":"modelarts_05_0190.html", + "doc_type":"usermanual", + "p_code":"314", + "code":"358" + }, + { + "desc":"An Ascend multi-card training job runs in multi-process, multi-card mode. The number of cards is equal to the number of Python processes. The Ascend underlayer reads the ", + "product_code":"modelarts", + "title":"How Do I Use Multiple Ascend Cards for Debugging in a Notebook Instance?", + "uri":"modelarts_05_3173.html", + "doc_type":"usermanual", + "p_code":"358", + "code":"359" + }, + { + "desc":"If your training job is single-process in code, the training speed is basically the same no matter when the notebook flavor of 8 vCPUs and 64 GB of memory or the flavor o", + "product_code":"modelarts", + "title":"Why Is the Training Speed Similar When Different Notebook Flavors Are Used?", + "uri":"modelarts_05_3147.html", + "doc_type":"usermanual", + "p_code":"358", + "code":"360" + }, + { + "desc":"If you are not satisfied with training results when using MoXing to build a model, you can perform incremental training after modifying some data and label information.Af", + "product_code":"modelarts", + "title":"How Do I Perform Incremental Training When Using MoXing?", + "uri":"modelarts_05_0076.html", + "doc_type":"usermanual", + "p_code":"358", + "code":"361" + }, + { + "desc":"If you select GPU when creating a notebook instance, perform the following operations to view GPU usage:Log in to the ModelArts management console, and choose DevEnviron ", + "product_code":"modelarts", + "title":"How Do I View GPU Usage on the Notebook?", + "uri":"modelarts_05_0082.html", + "doc_type":"usermanual", + "p_code":"358", + "code":"362" + }, + { + "desc":"Run the shell or python command to obtain the GPU usage.Run the nvidia-smi command.This operation relies on CUDA NVCC.watch -n 1 nvidia-smiThis operation relies on CUDA N", + "product_code":"modelarts", + "title":"How Can I Obtain GPU Usage Through Code?", + "uri":"modelarts_05_0374.html", + "doc_type":"usermanual", + "p_code":"358", + "code":"363" + }, + { + "desc":"The real-time performance indicator that can be viewed is npu-smi, which is similar to nvidia-smi of a GPU chip.", + "product_code":"modelarts", + "title":"Which Real-Time Performance Indicators of an Ascend Chip Can I View?", + "uri":"modelarts_05_0164.html", + "doc_type":"usermanual", + "p_code":"358", + "code":"364" + }, + { + "desc":"Files stored in JupyterLab are the same as those in the work directory on the Terminal page. That is, the files are created on your notebook instances or synchronized fro", + "product_code":"modelarts", + "title":"What Are the Relationships Between Files Stored in JupyterLab, Terminal, and OBS?", + "uri":"modelarts_05_0245.html", + "doc_type":"usermanual", + "p_code":"358", + "code":"365" + }, + { + "desc":"Datasets created on ModelArts are stored in OBS. To use these datasets in a notebook instance, download them from OBS to the notebook instance.For details, see How Do I U", + "product_code":"modelarts", + "title":"How Do I Use the Datasets Created on ModelArts in a Notebook Instance?", + "uri":"modelarts_05_0377.html", + "doc_type":"usermanual", + "p_code":"358", + "code":"366" + }, + { + "desc":"pip is a common Python package management tool. It allows you to search for, download, install, and uninstall Python packages.", + "product_code":"modelarts", + "title":"pip and Common Commands", + "uri":"modelarts_05_3113.html", + "doc_type":"usermanual", + "p_code":"358", + "code":"367" + }, + { + "desc":"When creating a notebook instance, you can select CPUs, GPUs, or Ascend based on the data volume.ModelArts mounts disks to /cache. You can use this directory to store tem", + "product_code":"modelarts", + "title":"What Are Sizes of the /cache Directories for Different Notebook Specifications in DevEnviron?", + "uri":"modelarts_05_3151.html", + "doc_type":"usermanual", + "p_code":"358", + "code":"368" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -2255,35 +3317,134 @@ "title":"Training Jobs", "uri":"modelarts_05_0030.html", "doc_type":"usermanual", - "p_code":"220", - "code":"251" + "p_code":"269", + "code":"369" }, { - "desc":"The code directory for creating a training job has limits on the size and number of files.Delete the files except the code from the code directory or save the files in ot", + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", - "title":"What Can I Do If the Message \"Object directory size/quantity exceeds the limit\" Is Displayed When I Create a Training Job?", - "uri":"modelarts_05_0031.html", + "title":"Functional Consulting", + "uri":"modelarts_05_0225.html", "doc_type":"usermanual", - "p_code":"251", - "code":"252" + "p_code":"369", + "code":"370" }, { - "desc":"When creating a training job, you can select CPU, GPU, or Ascend resources based on the size of the training job.ModelArts mounts the disk to the /cache directory. You ca", + "desc":"Increasing model complexityFor an algorithm, add more high-order items to the regression model, improve the depth of the decision tree, or increase the number of hidden l", "product_code":"modelarts", - "title":"What Are Sizes of the /cache Directories for Different Resource Specifications in the Training Environment?", - "uri":"modelarts_05_0090.html", + "title":"What Are the Solutions to Underfitting?", + "uri":"modelarts_05_0170.html", "doc_type":"usermanual", - "p_code":"251", - "code":"253" + "p_code":"370", + "code":"371" }, { - "desc":"When a model references a dependency package, select a frequently-used framework to create training jobs. In addition, place the required file or installation package in ", + "desc":"The differences between the new version and the old version lie in:Differences in Training Job CreationDifferences in Training Code AdaptationDifferences in Built-in Trai", "product_code":"modelarts", - "title":"How Do I Create a Training Job When a Dependency Package Is Referenced in a Model?", - "uri":"modelarts_05_0063.html", + "title":"What Are the Precautions for Switching Training Jobs from the Old Version to the New Version?", + "uri":"modelarts_06_0003.html", "doc_type":"usermanual", - "p_code":"251", - "code":"254" + "p_code":"370", + "code":"372" + }, + { + "desc":"Models generated using ModelArts ExeML can be deployed only on ModelArts and cannot be downloaded to your local PC.Models trained using a custom or subscription algorithm", + "product_code":"modelarts", + "title":"How Do I Obtain a Trained ModelArts Model?", + "uri":"modelarts_05_0360.html", + "doc_type":"usermanual", + "p_code":"370", + "code":"373" + }, + { + "desc":"Visualization jobs are powered by TensorBoard. For details about TensorBoard functions, see the TensorBoard official website.", + "product_code":"modelarts", + "title":"What Is TensorBoard Used for in Model Visualization Jobs?", + "uri":"modelarts_05_0379.html", + "doc_type":"usermanual", + "p_code":"370", + "code":"374" + }, + { + "desc":"ModelArts automatically provides the RANK_TABLE_FILE file for you. Obtain the file location through environment variables.Open the notebook terminal and run the following", + "product_code":"modelarts", + "title":"How Do I Obtain RANK_TABLE_FILE on ModelArts for Distributed Training?", + "uri":"modelarts_05_0380.html", + "doc_type":"usermanual", + "p_code":"370", + "code":"375" + }, + { + "desc":"Obtain a CUDA version:Obtain a cuDNN version:", + "product_code":"modelarts", + "title":"How Do I Obtain the CUDA and cuDNN Versions of a Custom Image?", + "uri":"modelarts_05_0381.html", + "doc_type":"usermanual", + "p_code":"370", + "code":"376" + }, + { + "desc":"MoXing installation files cannot be downloaded or installed by users. The MoXing installation package is preset in ModelArts notebook and training job images, and can be ", + "product_code":"modelarts", + "title":"How Do I Obtain a MoXing Installation File?", + "uri":"modelarts_05_3214.html", + "doc_type":"usermanual", + "p_code":"370", + "code":"377" + }, + { + "desc":"In a TensorFlow-powered distributed training, the PS task and worker task are started. The worker task is a key task. ModelArts will use a process exit code of the worker", + "product_code":"modelarts", + "title":"In a Multi-Node Training, the TensorFlow PS Node Functioning as a Server Will Be Continuously Suspended. How Does ModelArts Determine Whether the Training Is Complete? Which Node Is a Worker?", + "uri":"modelarts_05_0382.html", + "doc_type":"usermanual", + "p_code":"370", + "code":"378" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Reading Data During Training", + "uri":"modelarts_05_0235.html", + "doc_type":"usermanual", + "p_code":"369", + "code":"379" + }, + { + "desc":"When ModelArts is used for custom deep learning training, training data is usually stored in OBS. If the volume of training data is large (for example, greater than 200 G", + "product_code":"modelarts", + "title":"How Do I Improve Training Efficiency While Reducing Interaction with OBS?", + "uri":"modelarts_05_0114.html", + "doc_type":"usermanual", + "p_code":"379", + "code":"380" + }, + { + "desc":"If a dataset contains a large number of data files (massive small files) and data is stored in OBS, files need to be repeatedly read from OBS during training. As a result", + "product_code":"modelarts", + "title":"Why the Data Read Efficiency Is Low When a Large Number of Data Files Are Read During Training?", + "uri":"modelarts_05_0236.html", + "doc_type":"usermanual", + "p_code":"379", + "code":"381" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Compiling the Training Code", + "uri":"modelarts_05_0224.html", + "doc_type":"usermanual", + "p_code":"369", + "code":"382" + }, + { + "desc":"The path to the training environment and the code directory in the container are generally obtained using the environment variable ${MA_JOB_DIR}, which is /home/ma-user/m", + "product_code":"modelarts", + "title":"What Is the Common File Path for Training Jobs?", + "uri":"modelarts_05_0086.html", + "doc_type":"usermanual", + "p_code":"382", + "code":"383" }, { "desc":"A third-party library may be used during job training. The following uses C++ as an example to describe how to install a third-party library.Download source code to a loc", @@ -2291,8 +3452,17 @@ "title":"How Do I Install a Library That C++ Depends on?", "uri":"modelarts_05_0088.html", "doc_type":"usermanual", - "p_code":"251", - "code":"255" + "p_code":"382", + "code":"384" + }, + { + "desc":"In the script for training job boot file, run the following commands to obtain the sizes of the copied folders and the folders to be copied. Then determine whether folder", + "product_code":"modelarts", + "title":"How Do I Check Whether a Folder Copy Is Complete During Job Training?", + "uri":"modelarts_05_0092.html", + "doc_type":"usermanual", + "p_code":"382", + "code":"385" }, { "desc":"During job training, some parameters need to be loaded from a pre-trained model to initialize the current model. You can use the following methods to load the parameters:", @@ -2300,17 +3470,161 @@ "title":"How Do I Load Some Well Trained Parameters During Job Training?", "uri":"modelarts_05_0091.html", "doc_type":"usermanual", - "p_code":"251", - "code":"256" + "p_code":"382", + "code":"386" }, { - "desc":"If the training job is always queuing, the selected resources are limited in the resource pool, and the job needs to be queued. In this case, wait for resources. To speed", + "desc":"Training job parameters can be automatically generated in the background or you can enter them manually. To obtain training job parameters:When a training job is created,", "product_code":"modelarts", - "title":"Why Is a Training Job Always Queuing?", - "uri":"modelarts_05_0363.html", + "title":"How Do I Obtain Training Job Parameters from the Boot File of the Training Job?", + "uri":"modelarts_05_0093.html", "doc_type":"usermanual", - "p_code":"251", - "code":"257" + "p_code":"382", + "code":"387" + }, + { + "desc":"If you cannot access the corresponding folder by using os.system('cd xxx') in the boot script of the training job, you are advised to use the following method:", + "product_code":"modelarts", + "title":"Why Can't I Use os.system ('cd xxx') to Access the Corresponding Folder During Job Training?", + "uri":"modelarts_05_0097.html", + "doc_type":"usermanual", + "p_code":"382", + "code":"388" + }, + { + "desc":"ModelArts enables you to invoke a shell script, and you can use Python to invoke .sh. The procedure is as follows:Upload the .sh script to an OBS bucket. For example, upl", + "product_code":"modelarts", + "title":"How Do I Invoke a Shell Script in a Training Job to Execute the .sh File?", + "uri":"modelarts_05_0078.html", + "doc_type":"usermanual", + "p_code":"382", + "code":"389" + }, + { + "desc":"Since locally developed code must be uploaded to the ModelArts backend, you may set an invalid dependency file path. A recommended general solution to this problem is tha", + "product_code":"modelarts", + "title":"How Do I Obtain the Dependency File Path to be Used in Training Code?", + "uri":"modelarts_05_0280.html", + "doc_type":"usermanual", + "p_code":"382", + "code":"390" + }, + { + "desc":"To obtain the actual path to a file in a container, use Python.You can also use other methods of obtaining a file path through the search engine and use the obtained path", + "product_code":"modelarts", + "title":"What Is the File Path If a File in the model Directory Is Referenced in a Custom Python Package?", + "uri":"modelarts_05_3217.html", + "doc_type":"usermanual", + "p_code":"382", + "code":"391" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Creating a Training Job", + "uri":"modelarts_05_0223.html", + "doc_type":"usermanual", + "p_code":"369", + "code":"392" + }, + { + "desc":"The code directory for creating a training job has limits on the size and number of files.Delete the files except the code from the code directory or save the files in ot", + "product_code":"modelarts", + "title":"What Can I Do If the Message \"Object directory size/quantity exceeds the limit\" Is Displayed When I Create a Training Job?", + "uri":"modelarts_05_0031.html", + "doc_type":"usermanual", + "p_code":"392", + "code":"393" + }, + { + "desc":"When creating a training job, you can select CPU, GPU, or Ascend resources based on the size of the training job.ModelArts mounts a disk to /cache. You can use this direc", + "product_code":"modelarts", + "title":"What Are Sizes of the /cache Directories for Different Resource Specifications in the Training Environment?", + "uri":"modelarts_05_0090.html", + "doc_type":"usermanual", + "p_code":"392", + "code":"394" + }, + { + "desc":"The program of a ModelArts training job runs in a container. The address of a directory to which the container is mounted is unique, and can be accessed only by the runni", + "product_code":"modelarts", + "title":"Is the /cache Directory of a Training Job Secure?", + "uri":"modelarts_05_0098.html", + "doc_type":"usermanual", + "p_code":"392", + "code":"395" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Managing Training Job Versions", + "uri":"modelarts_05_0222.html", + "doc_type":"usermanual", + "p_code":"369", + "code":"396" + }, + { + "desc":"ModelArts training jobs do not support scheduled or periodic calling. When your job is in the Running state, you can call the job based on service requirements.", + "product_code":"modelarts", + "title":"Does a Training Job Support Scheduled or Periodic Calling?", + "uri":"modelarts_05_0133.html", + "doc_type":"usermanual", + "p_code":"396", + "code":"397" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Viewing Job Details", + "uri":"modelarts_05_0226.html", + "doc_type":"usermanual", + "p_code":"369", + "code":"398" + }, + { + "desc":"In the left navigation pane of the ModelArts management console, choose Training Management > Training Jobs to go to the Training Jobs page. In the training job list, cli", + "product_code":"modelarts", + "title":"How Do I Check Resource Usage of a Training Job?", + "uri":"modelarts_05_0089.html", + "doc_type":"usermanual", + "p_code":"398", + "code":"399" + }, + { + "desc":"ModelArts does not support access to the background of a training job.", + "product_code":"modelarts", + "title":"How Do I Access the Background of a Training Job?", + "uri":"modelarts_05_0094.html", + "doc_type":"usermanual", + "p_code":"398", + "code":"400" + }, + { + "desc":"Storage directories of ModelArts training jobs do not affect each other. Environments are isolated from each other, and data of other jobs cannot be viewed.", + "product_code":"modelarts", + "title":"Is There Any Conflict When Models of Two Training Jobs Are Saved in the Same Directory of a Container?", + "uri":"modelarts_05_0095.html", + "doc_type":"usermanual", + "p_code":"398", + "code":"401" + }, + { + "desc":"In a training job, only three valid digits are retained in a training output log. When the value of loss is too small, the value is displayed as 0.000. Log content is as ", + "product_code":"modelarts", + "title":"Only Three Valid Digits Are Retained in a Training Output Log. Can the Value of loss Be Changed?", + "uri":"modelarts_05_0096.html", + "doc_type":"usermanual", + "p_code":"398", + "code":"402" + }, + { + "desc":"You can download the model trained by a training job and upload the downloaded model to OBS in the region corresponding to the target account.Log in to the ModelArts cons", + "product_code":"modelarts", + "title":"Can a Trained Model Be Downloaded or Migrated to Another Account? How Do I Obtain the Download Path?", + "uri":"modelarts_05_0121.html", + "doc_type":"usermanual", + "p_code":"398", + "code":"403" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -2318,26 +3632,35 @@ "title":"Model Management", "uri":"modelarts_05_0016.html", "doc_type":"usermanual", - "p_code":"220", - "code":"258" + "p_code":"269", + "code":"404" }, { - "desc":"ModelArts does not support the import of models in .h5 format. You can convert the models in .h5 format of Keras to the TensorFlow format and then import the models to Mo", + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", - "title":"How Do I Import the .h5 Model of Keras to ModelArts?", - "uri":"modelarts_21_0086.html", + "title":"Importing Models", + "uri":"modelarts_05_0215.html", "doc_type":"usermanual", - "p_code":"258", - "code":"259" + "p_code":"404", + "code":"405" }, { - "desc":"ModelArts allows you to upload local models to OBS or import models stored in OBS directly into ModelArts.For details about how to import a model from OBS, see \"Importing", + "desc":"A port number (for example, 8443) has been specified in a model configuration file. If you do not specify a port (default port 8080 will be used then) or specify another ", "product_code":"modelarts", - "title":"How Do I Import a Model Downloaded from OBS to ModelArts?", - "uri":"modelarts_05_0124.html", + "title":"How Do I Change the Default Port to Create a Real-Time Service Using a Custom Image?", + "uri":"modelarts_06_0004.html", "doc_type":"usermanual", - "p_code":"258", - "code":"260" + "p_code":"405", + "code":"406" + }, + { + "desc":"During the creation of an AI application, every key event is automatically recorded. You can view the events on the details page of the AI application at any time.The fol", + "product_code":"modelarts", + "title":"What Are the Events and Their Types for an AI application?", + "uri":"modelarts_06_0008.html", + "doc_type":"usermanual", + "p_code":"405", + "code":"407" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -2345,8 +3668,17 @@ "title":"Service Deployment", "uri":"modelarts_05_0017.html", "doc_type":"usermanual", - "p_code":"220", - "code":"261" + "p_code":"269", + "code":"408" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Functional Consulting", + "uri":"modelarts_05_0208.html", + "doc_type":"usermanual", + "p_code":"408", + "code":"409" }, { "desc":"Models can be deployed as real-time services or batch services.", @@ -2354,26 +3686,611 @@ "title":"What Types of Services Can Models Be Deployed as on ModelArts?", "uri":"modelarts_05_0012.html", "doc_type":"usermanual", - "p_code":"261", - "code":"262" + "p_code":"409", + "code":"410" }, { - "desc":"Before importing a model, you need to place the corresponding inference code and configuration file in the model folder. When encoding with Python, you are advised to use", + "desc":"Real-Time ServicesModels are deployed as web services. You can access the services through the management console or APIs.Models are deployed as web services. You can acc", "product_code":"modelarts", - "title":"What Should I Do If a Conflict Occurs When Deploying a Model As a Real-Time Service?", + "title":"What Are the Differences Between Real-Time Services and Batch Services?", + "uri":"modelarts_05_0356.html", + "doc_type":"usermanual", + "p_code":"409", + "code":"411" + }, + { + "desc":"Before deploying a service, specify node specifications. The node specifications displayed on the GUI are calculated by ModelArts based on the target AI application and t", + "product_code":"modelarts", + "title":"How Do I Select Compute Node Specifications for Deploying a Service?", + "uri":"modelarts_05_3157.html", + "doc_type":"usermanual", + "p_code":"409", + "code":"412" + }, + { + "desc":"CUDA 10.2 is supported by default. If a later version is required, submit a service ticket to apply for technical support.", + "product_code":"modelarts", + "title":"What Is the CUDA Version for Deploying a Service on GPUs?", + "uri":"modelarts_05_3158.html", + "doc_type":"usermanual", + "p_code":"409", + "code":"413" + }, + { + "desc":"During the whole lifecycle of a service, every key event is automatically recorded. You can view the events on the details page of the service at any time.The following t", + "product_code":"modelarts", + "title":"What Are the Events and Their Types for a Service?", + "uri":"modelarts_01_0023.html", + "doc_type":"usermanual", + "p_code":"409", + "code":"414" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Real-Time Services", + "uri":"modelarts_05_0217.html", + "doc_type":"usermanual", + "p_code":"408", + "code":"415" + }, + { + "desc":"Before importing a model, save the inference code and configuration file in the model folder. When coding with Python, import custom packages in relative import (Python i", + "product_code":"modelarts", + "title":"What Do I Do If a Conflict Occurs in the Python Dependency Package of a Custom Prediction Script When I Deploy a Real-Time Service?", "uri":"modelarts_05_0100.html", "doc_type":"usermanual", - "p_code":"261", - "code":"263" + "p_code":"415", + "code":"416" + }, + { + "desc":"After an AI application is deployed as a real-time service, you can use the API for inference.The format of an API is as follows:Example:", + "product_code":"modelarts", + "title":"What Is the Format of a Real-Time Service API?", + "uri":"modelarts_05_0364.html", + "doc_type":"usermanual", + "p_code":"415", + "code":"417" + }, + { + "desc":"The available disk space of the node is smaller than the image size.Reduce the image size.If the problem persists after the image size is reduced, contact the system admi", + "product_code":"modelarts", + "title":"What Do I Do If an Image Fails to Be Pulled When a Real-Time Service Is Deployed, Started, Upgraded, or Modified?", + "uri":"modelarts_05_3152.html", + "doc_type":"usermanual", + "p_code":"415", + "code":"418" + }, + { + "desc":"There is a bug in the container image code.Debug the container image code based on container logs, create the AI application again, and deploy the application as a real-t", + "product_code":"modelarts", + "title":"What Do I Do If an Image Restarts Repeatedly When a Real-Time Service Is Deployed, Started, Upgraded, or Modified?", + "uri":"modelarts_05_3153.html", + "doc_type":"usermanual", + "p_code":"415", + "code":"419" + }, + { + "desc":"The configured instance specifications are beyond the specifications provided by the resource pool.When resources are insufficient, ModelArts retries for three times. If ", + "product_code":"modelarts", + "title":"What Do I Do If Resources Are Insufficient When a Real-Time Service Is Deployed, Started, Upgraded, or Modified?", + "uri":"modelarts_05_3155.html", + "doc_type":"usermanual", + "p_code":"415", + "code":"420" + }, + { + "desc":"A model can properly start after a service is deployed. The startup status of a model can be detected through a health check.Check whether a service is deployed using a h", + "product_code":"modelarts", + "title":"Why Did My Service Deployment Fail with Proper Deployment Timeout Configured?", + "uri":"modelarts_05_3207.html", + "doc_type":"usermanual", + "p_code":"415", + "code":"421" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"API/SDK", + "uri":"modelarts_05_0200.html", + "doc_type":"usermanual", + "p_code":"269", + "code":"422" + }, + { + "desc":"ModelArts APIs or SDKs cannot be used to download models to a local PC. However, the output models of training jobs are stored in OBS. You can use OBS APIs or SDKs to dow", + "product_code":"modelarts", + "title":"Can ModelArts APIs or SDKs Be Used to Download Models to a Local PC?", + "uri":"modelarts_05_0201.html", + "doc_type":"usermanual", + "p_code":"422", + "code":"423" + }, + { + "desc":"ModelArts SDKs can run in notebook or local environments. However, the supported environments vary depending on architectures. For details, see Table 1.", + "product_code":"modelarts", + "title":"What Installation Environments Do ModelArts SDKs Support?", + "uri":"modelarts_05_0227.html", + "doc_type":"usermanual", + "p_code":"422", + "code":"424" + }, + { + "desc":"In the same region, ModelArts uses the OBS API to access files stored in OBS over an intranet and does not consume public network traffic.If you download data from OBS th", + "product_code":"modelarts", + "title":"Does ModelArts Use the OBS API to Access OBS Files over an Intranet or the Internet?", + "uri":"modelarts_05_0228.html", + "doc_type":"usermanual", + "p_code":"422", + "code":"425" + }, + { + "desc":"After submitting a training job by calling an API, log in to the ModelArts console, choose Training Management > Training Jobs, and click the name or ID of the target tra", + "product_code":"modelarts", + "title":"How Do I Obtain a Job Resource Usage Curve After I Submit a Training Job by Calling an API?", + "uri":"modelarts_05_0296.html", + "doc_type":"usermanual", + "p_code":"422", + "code":"426" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Using PyCharm Toolkit", + "uri":"modelarts_15_0011.html", + "doc_type":"usermanual", + "p_code":"269", + "code":"427" + }, + { + "desc":"The following error message is displayed during Toolkit installation.This issue occurs because the plug-in version is inconsistent with the PyCharm version. You need to o", + "product_code":"modelarts", + "title":"What Should I Do If an Error Occurs During Toolkit Installation?", + "uri":"modelarts_15_0012.html", + "doc_type":"usermanual", + "p_code":"427", + "code":"428" + }, + { + "desc":"If code that does not belong to the used project is selected in a boot script, training cannot be started. The following figure shows error information. You are advised t", + "product_code":"modelarts", + "title":"Why Cannot I Start Training?", + "uri":"modelarts_15_0013.html", + "doc_type":"usermanual", + "p_code":"427", + "code":"429" + }, + { + "desc":"Error \"xxx isn't existed in train_version\" occurs when a training job is submitted. See the following figure.The preceding error occurs because the user logs in to the Mo", + "product_code":"modelarts", + "title":"What Should I Do If Error \"xxx isn't existed in train_version\" Occurs When a Training Job Is Submitted?", + "uri":"modelarts_15_0020.html", + "doc_type":"usermanual", + "p_code":"427", + "code":"430" + }, + { + "desc":"When a training job is running, the \"Invalid OBS path\" error is reported.To locate the fault, perform the following operations:If you are using ModelArts for the first ti", + "product_code":"modelarts", + "title":"What Should I Do If an Error Occurs When I Submit a Training Job?", + "uri":"modelarts_15_0021.html", + "doc_type":"usermanual", + "p_code":"427", + "code":"431" + }, + { + "desc":"The error logs of PyCharm Toolkit are recorded in the idea.log file of PyCharm. For example, in the Windows operating system, the path of the idea.log file is C:\\Users\\xx", + "product_code":"modelarts", + "title":"How Do I View Error Logs of PyCharm Toolkit?", + "uri":"modelarts_15_0022.html", + "doc_type":"usermanual", + "p_code":"427", + "code":"432" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", "title":"Troubleshooting", - "uri":"trouble-modelarts-0000.html", + "uri":"modelarts_77_0155.html", "doc_type":"usermanual", "p_code":"", - "code":"264" + "code":"433" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"General Issues", + "uri":"modelarts_13_0119.html", + "doc_type":"usermanual", + "p_code":"433", + "code":"434" + }, + { + "desc":"When ModelArts attempts to use an OBS bucket path, a message is displayed, indicating that the created OBS bucket is unavailable.Alternatively, error message \"ModelArts.2", + "product_code":"modelarts", + "title":"Incorrect OBS Path on ModelArts", + "uri":"modelarts_13_0157.html", + "doc_type":"usermanual", + "p_code":"434", + "code":"435" + }, + { + "desc":"Message \"Error: stat:403\" is displayed when I use mox.file.copy_parallel in ModelArts to perform operations on OBS.ModelArts uses an AK/SK for authentication globally, an", + "product_code":"modelarts", + "title":"Why Error: 403 Forbidden Is Displayed When I Perform Operations on OBS?", + "uri":"modelarts_05_0166.html", + "doc_type":"usermanual", + "p_code":"434", + "code":"436" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"ExeML", + "uri":"modelarts_13_0046.html", + "doc_type":"usermanual", + "p_code":"433", + "code":"437" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Preparing Data", + "uri":"modelarts_13_0055.html", + "doc_type":"usermanual", + "p_code":"437", + "code":"438" + }, + { + "desc":"If this fault occurs, the data does not meet the requirements of the data management module. As a result, the dataset fails to be published and the following operations c", + "product_code":"modelarts", + "title":"Failed to Publish a Dataset Version", + "uri":"modelarts_13_0047.html", + "doc_type":"usermanual", + "p_code":"438", + "code":"439" + }, + { + "desc":"If this issue occurs, the dataset version is successfully released but does not meet the requirements of the ExeML training jobs. As a result, an error message is display", + "product_code":"modelarts", + "title":"Invalid Dataset Version", + "uri":"modelarts_13_0048.html", + "doc_type":"usermanual", + "p_code":"438", + "code":"440" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Training a Model", + "uri":"modelarts_13_0056.html", + "doc_type":"usermanual", + "p_code":"437", + "code":"441" + }, + { + "desc":"This fault is typically caused by a backend service failure. Recreate the training job later. If the fault persists after three retries, contact .", + "product_code":"modelarts", + "title":"Failed to Create an ExeML-powered Training Job", + "uri":"modelarts_13_0049.html", + "doc_type":"usermanual", + "p_code":"441", + "code":"442" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Deploying a Model", + "uri":"modelarts_13_0057.html", + "doc_type":"usermanual", + "p_code":"437", + "code":"443" + }, + { + "desc":"This fault is typically caused by the limited quota of the account.In an ExeML project, after the deployment is started, the model is automatically deployed as a real-tim", + "product_code":"modelarts", + "title":"Failed to Submit the Real-time Service Deployment Task", + "uri":"modelarts_13_0053.html", + "doc_type":"usermanual", + "p_code":"443", + "code":"444" + }, + { + "desc":"This fault is typically caused by a backend service failure. You are advised to redeploy the real-time service later. If the fault persists after three retries, obtain th", + "product_code":"modelarts", + "title":"Failed to Deploy a Real-time Service", + "uri":"modelarts_13_0054.html", + "doc_type":"usermanual", + "p_code":"443", + "code":"445" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"DevEnviron (Notebook of New Version)", + "uri":"modelarts_13_0001.html", + "doc_type":"usermanual", + "p_code":"433", + "code":"446" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"OBS Operation Faults", + "uri":"modelarts_13_0100.html", + "doc_type":"usermanual", + "p_code":"446", + "code":"447" + }, + { + "desc":"Message \"Error: stat:403\" is displayed when I use mox.file.copy_parallel in ModelArts to perform operations on OBS.ModelArts uses an AK/SK for authentication globally, an", + "product_code":"modelarts", + "title":"Why Error: 403 Forbidden Is Displayed When I Perform Operations on OBS?", + "uri":"modelarts_13_0101.html", + "doc_type":"usermanual", + "p_code":"447", + "code":"448" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Environment Configuration Faults", + "uri":"modelarts_13_0103.html", + "doc_type":"usermanual", + "p_code":"446", + "code":"449" + }, + { + "desc":"Error message \"No Space left on Device\" is displayed when a notebook instance is used.Error message \"Disk quota exceeded\" is displayed when code is executed in a notebook", + "product_code":"modelarts", + "title":"Disk Space Used Up", + "uri":"modelarts_13_0006.html", + "doc_type":"usermanual", + "p_code":"449", + "code":"450" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Instance Faults", + "uri":"modelarts_13_0105.html", + "doc_type":"usermanual", + "p_code":"446", + "code":"451" + }, + { + "desc":"Troubleshoot the issue based on error code.If this error is reported when an IAM user creates an instance, the IAM user does not have the permissions to access the corres", + "product_code":"modelarts", + "title":"What Do I Do If I Cannot Access My Notebook Instance?", + "uri":"modelarts_13_0106.html", + "doc_type":"usermanual", + "p_code":"451", + "code":"452" + }, + { + "desc":"In the notebook instance, error message \"No Space left...\" is displayed after the pip install command is run.You are advised to run the pip install --no-cache ** command", + "product_code":"modelarts", + "title":"What Should I Do When the System Displays an Error Message Indicating that No Space Left After I Run the pip install Command?", + "uri":"modelarts_13_0107.html", + "doc_type":"usermanual", + "p_code":"451", + "code":"453" + }, + { + "desc":"If the notebook instance can run the code but cannot save it, the error message \"save error\" is displayed when you save the file. In most cases, this error is caused by a", + "product_code":"modelarts", + "title":"What Do I Do If the Code Can Be Run But Cannot Be Saved, and the Error Message \"save error\" Is Displayed?", + "uri":"modelarts_13_0108.html", + "doc_type":"usermanual", + "p_code":"451", + "code":"454" + }, + { + "desc":"When you use a notebook instance, the ModelArts.6333 error is displayed.The fault may be caused by instance overload. The notebook instance automatically restores. Refres", + "product_code":"modelarts", + "title":"ModelArts.6333 Error Occurs", + "uri":"modelarts_13_0042.html", + "doc_type":"usermanual", + "p_code":"451", + "code":"455" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Code Running Failures", + "uri":"modelarts_13_0112.html", + "doc_type":"usermanual", + "p_code":"446", + "code":"456" + }, + { + "desc":"When the a notebook instance is used to run code, the following error occurs:Check whether a large amount of data is saved in /tmp.Go to the Terminal page. In the /tmp di", + "product_code":"modelarts", + "title":"Error Occurs When Using a Notebook Instance to Run Code, Indicating That No File Is Found in /tmp", + "uri":"modelarts_13_0008.html", + "doc_type":"usermanual", + "p_code":"456", + "code":"457" + }, + { + "desc":"If a notebook instance fails to execute code, you can locate and rectify the fault as follows:If the execution of a cell is suspended or lasts for a long time (for exampl", + "product_code":"modelarts", + "title":"What Do I Do If a Notebook Instance Won't Run My Code?", + "uri":"modelarts_13_0113.html", + "doc_type":"usermanual", + "p_code":"456", + "code":"458" + }, + { + "desc":"The notebook instance breaks down during training code running due to insufficient memory caused by large data volume or excessive training layers.After this error occurs", + "product_code":"modelarts", + "title":"Why Does the Instance Break Down When dead kernel Is Displayed During Training Code Running?", + "uri":"modelarts_13_0114.html", + "doc_type":"usermanual", + "p_code":"456", + "code":"459" + }, + { + "desc":"The following error occurs when the training code is executed in a notebook:Parameters arch and code in setup.py have not been set to match the GPU compute power.For Tesl", + "product_code":"modelarts", + "title":"What Do I Do If cudaCheckError Occurs During Training?", + "uri":"modelarts_13_0115.html", + "doc_type":"usermanual", + "p_code":"456", + "code":"460" + }, + { + "desc":"If space is insufficient, you are advised to use notebook instances of the EVS type.For existing notebook instances, upload the codes and data to the OBS bucket. For deta", + "product_code":"modelarts", + "title":"What Should I Do If DevEnviron Prompts Insufficient Space?", + "uri":"modelarts_13_0116.html", + "doc_type":"usermanual", + "p_code":"456", + "code":"461" + }, + { + "desc":"When opencv.imshow is used in a notebook instance, the notebook instance breaks down.The cv2.imshow function in OpenCV malfunctions in a client/server environment such as", + "product_code":"modelarts", + "title":"Why Does the Notebook Instance Break Down When opencv.imshow Is Used?", + "uri":"modelarts_13_0117.html", + "doc_type":"usermanual", + "p_code":"456", + "code":"462" + }, + { + "desc":"When a text file generated in Windows is used in a notebook instance, the text content cannot be read and an error message may be displayed indicating that the path canno", + "product_code":"modelarts", + "title":"Why Cannot the Path of a Text File Generated in Windows OS Be Found In a Notebook Instance?", + "uri":"modelarts_13_0118.html", + "doc_type":"usermanual", + "p_code":"456", + "code":"463" + }, + { + "desc":"After a notebook file is created, \"No Kernel\" is displayed in the upper right corner of the page.The code.py file in the work directory conflicts with the name of the imp", + "product_code":"modelarts", + "title":"What Do I Do If No Kernel Is Displayed After a Notebook File Is Created?", + "uri":"modelarts_13_0246.html", + "doc_type":"usermanual", + "p_code":"456", + "code":"464" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"JupyterLab Plug-in Faults", + "uri":"modelarts_13_0255.html", + "doc_type":"usermanual", + "p_code":"446", + "code":"465" + }, + { + "desc":"If the Git plug-in is used in JupyterLab, when a private repository is cloned or a file is pushed, an error occurs.The authorization using a password has been canceled in", + "product_code":"modelarts", + "title":"What Do I Do If the Git Plug-in Password Is Invalid?", + "uri":"modelarts_13_0256.html", + "doc_type":"usermanual", + "p_code":"465", + "code":"466" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Other Faults", + "uri":"modelarts_13_0202.html", + "doc_type":"usermanual", + "p_code":"446", + "code":"467" + }, + { + "desc":"checkpoints is a keyword in notebook. If a created folder is named checkpoints, the folder will not be opened, renamed, or deleted on JupyterLab.ProcedureOpen the termina", + "product_code":"modelarts", + "title":"Failed to Open the checkpoints Folder in Notebook", + "uri":"modelarts_05_3171.html", + "doc_type":"usermanual", + "p_code":"467", + "code":"468" + }, + { + "desc":"A dedicated resource pool that has been purchased cannot be selected for creating a notebook instance, resulting in the creation failure.A message is displayed, indicatin", + "product_code":"modelarts", + "title":"Failed to Use a Purchased Dedicated Resource Pool to Create New-Version Notebook Instances", + "uri":"modelarts_05_3180.html", + "doc_type":"usermanual", + "p_code":"467", + "code":"469" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"DevEnviron (Notebook of Old Version)", + "uri":"modelarts_13_0214.html", + "doc_type":"usermanual", + "p_code":"433", + "code":"470" + }, + { + "desc":"The following error occurs when synchronizing data from OBS to a notebook instance: obs sync failed. As a result, the notebook instance cannot be used properly.If you set", + "product_code":"modelarts", + "title":"Error Occurs When Using Sync OBS to Synchronize Data from OBS. Is There Any Restriction on the Total Size of Files for Synchronization?", + "uri":"modelarts_13_0004.html", + "doc_type":"usermanual", + "p_code":"470", + "code":"471" + }, + { + "desc":"The environment failed to be accessed after the user runs the source activate xxx command in Terminal.The basic framework package or the package installed by running the ", + "product_code":"modelarts", + "title":"Terminal Environment Access Fails and Error Occurs When a Third-party Installation Package Iis Imported", + "uri":"modelarts_13_0002.html", + "doc_type":"usermanual", + "p_code":"470", + "code":"472" + }, + { + "desc":"On the Notebook Jupyter page, \"Error loading notebook\" is displayed when an IPYNB file is created.This issue may be caused by the attributes of the OBS bucket selected du", + "product_code":"modelarts", + "title":"\"Error loading notebook\" Occurred When an IPYNB File Is Created", + "uri":"modelarts_13_0110.html", + "doc_type":"usermanual", + "p_code":"470", + "code":"473" + }, + { + "desc":"After the user run the python a.py command in the Terminal environment of a notebook instance, the .py file in the same directory failed to be referenced, and the followi", + "product_code":"modelarts", + "title":"Notebook Instance Failed to Reference the .py File in the Same Directory", + "uri":"modelarts_13_0003.html", + "doc_type":"usermanual", + "p_code":"470", + "code":"474" + }, + { + "desc":"The following error occurs when a user saves the ipynb file on the Jupyter page accessed using a notebook instance: The file has changed on disk since the last time we op", + "product_code":"modelarts", + "title":"Error Occurs When the ipynb File Is Saved", + "uri":"modelarts_13_0007.html", + "doc_type":"usermanual", + "p_code":"470", + "code":"475" + }, + { + "desc":"Obtain the address of the Python library to be imported, and follow the instructions in Adding Folders to sys.path of Python 3 to import the Python library. There are two", + "product_code":"modelarts", + "title":"How Do I Import a Python Library to a Notebook Instance to Resolve the ModuleNotFoundError Error?", + "uri":"modelarts_13_0104.html", + "doc_type":"usermanual", + "p_code":"470", + "code":"476" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Training Jobs", + "uri":"modelarts_13_0009.html", + "doc_type":"usermanual", + "p_code":"433", + "code":"477" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -2381,8 +4298,8 @@ "title":"OBS Operation Issues", "uri":"modelarts_13_0070.html", "doc_type":"usermanual", - "p_code":"264", - "code":"265" + "p_code":"477", + "code":"478" }, { "desc":"How to read the json and npy files when creating a training job.How the training job uses the cv2 library to read files.How to use the torch package in the MXNet environm", @@ -2390,8 +4307,8 @@ "title":"Failed to Correctly Read Files", "uri":"modelarts_13_0018.html", "doc_type":"usermanual", - "p_code":"265", - "code":"266" + "p_code":"478", + "code":"479" }, { "desc":"After a training job is started based on TensorFlow-1.8 and the tf.gfile module is used to connect to OBS in code, the following log information is frequently printed:Thi", @@ -2399,8 +4316,8 @@ "title":"Error Message Is Displayed Repeatedly When a TensorFlow-1.8 Job Is Connected to OBS", "uri":"modelarts_13_0019.html", "doc_type":"usermanual", - "p_code":"265", - "code":"267" + "p_code":"478", + "code":"480" }, { "desc":"The following error message is displayed for a ModelArts training job:The size of files to be uploaded at a time is limited to 5 GB in OBS. TensorFlow may save the summar", @@ -2408,8 +4325,8 @@ "title":"TensorFlow Stops Writing TensorBoard to OBS When the Size of Written Data Reaches 5 GB", "uri":"modelarts_13_0022.html", "doc_type":"usermanual", - "p_code":"265", - "code":"268" + "p_code":"478", + "code":"481" }, { "desc":"An error occurs in the log when a model is saved in a training job. The error details are as follows:InternalError (see above for traceback): : Unable to connect to endpo", @@ -2417,17 +4334,17 @@ "title":"Error \"Unable to connect to endpoint\" Error Occurs When a Model Is Saved", "uri":"modelarts_13_0020.html", "doc_type":"usermanual", - "p_code":"265", - "code":"269" + "p_code":"478", + "code":"482" }, { "desc":"When you use ModelArts, your data is stored in an OBS bucket. There is an OBS path to your data, for example, bucket_name/dir/image.jpg. ModelArts training jobs run in co", "product_code":"modelarts", "title":"What Do I Do If Error Message \"No such file or directory\" Is Displayed in Training Job Logs?", - "uri":"modelarts_05_0032.html", + "uri":"modelarts_13_0121.html", "doc_type":"usermanual", - "p_code":"265", - "code":"270" + "p_code":"478", + "code":"483" }, { "desc":"The error message is displayed when MoXing is used to copy data for a training job.The possible causes are as follows:In a large-scale distributed job, multiple nodes are", @@ -2435,26 +4352,17 @@ "title":"Error Message \"BrokenPipeError: Broken pipe\" Displayed When OBS Data Is Copied", "uri":"modelarts_trouble_0042.html", "doc_type":"usermanual", - "p_code":"265", - "code":"271" - }, - { - "desc":"When TensorBoard is used to directly write data in an OBS path for a training job, an error similar to the following is displayed.The possible causes are as follows:It is", - "product_code":"modelarts", - "title":"Error Message \"ValueError: Invalid endpoint: obs.xxxx.com\" Displayed in Logs", - "uri":"modelarts_trouble_0048.html", - "doc_type":"usermanual", - "p_code":"265", - "code":"272" + "p_code":"478", + "code":"484" }, { "desc":"When MoXing is used to access an OBS path, the following error is displayed:ERROR:root:\nstat:404\nerrorCode:NoSuchKey\nerrorMessage:The specified key does not exist.The pos", "product_code":"modelarts", - "title":"Error Message \"errorMessage:The specified bucket does not exist\" Displayed in Logs", + "title":"Error Message \"errorMessage:The specified key does not exist\" Displayed in Logs", "uri":"modelarts_trouble_0035.html", "doc_type":"usermanual", - "p_code":"265", - "code":"273" + "p_code":"478", + "code":"485" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -2462,8 +4370,8 @@ "title":"In-Cloud Migration Adaptation Issues", "uri":"modelarts_13_0071.html", "doc_type":"usermanual", - "p_code":"264", - "code":"274" + "p_code":"477", + "code":"486" }, { "desc":"The following error occurs in the log when a module is imported to a ModelArts training job:When a training job is imported to the module, the previous two error messages", @@ -2471,26 +4379,26 @@ "title":"Failed to Import a Module", "uri":"modelarts_13_0014.html", "doc_type":"usermanual", - "p_code":"274", - "code":"275" + "p_code":"486", + "code":"487" }, { - "desc":"Perform the following operations to locate the fault:Checking Whether the Dependency Package Is AvailableChecking Whether the Dependency Package Path Can Be DetectedSumma", + "desc":"Perform the following operations to locate the fault:Checking Whether the Dependency Package Is AvailableChecking Whether the Dependency Package Path Can Be DetectedCheck", "product_code":"modelarts", "title":"Error Message \"No module named .*\" Displayed in Training Job Logs", "uri":"modelarts_trouble_0015.html", "doc_type":"usermanual", - "p_code":"274", - "code":"276" + "p_code":"486", + "code":"488" }, { - "desc":"Failed to install custom library functions for ModelArts, for example, apex.The following error occurs when a third-party package is installed in the ModelArts training e", + "desc":"How to install custom library functions for ModelArts, for example, apex.The following error occurs when a third-party package is installed in the ModelArts training envi", "product_code":"modelarts", "title":"Failed to Install a Third-Party Package", "uri":"modelarts_13_0015.html", "doc_type":"usermanual", - "p_code":"274", - "code":"277" + "p_code":"486", + "code":"489" }, { "desc":"The code directory fails to be downloaded during training job running, and the following error message is displayed. See Figure 1.The code directory specified during trai", @@ -2498,71 +4406,53 @@ "title":"Failed to Download the Code Directory", "uri":"modelarts_13_0023.html", "doc_type":"usermanual", - "p_code":"274", - "code":"278" + "p_code":"486", + "code":"490" }, { - "desc":"The following error occurs in the ModelArts training job log:FileNotFoundError:[Errno 2]No such file or directory:'data_v.pickle'According to the error message, the file ", - "product_code":"modelarts", - "title":"Failed to Find a File in a Training Job", - "uri":"modelarts_13_0039.html", - "doc_type":"usermanual", - "p_code":"274", - "code":"279" - }, - { - "desc":"Perform the following operations to locate the fault:Checking Whether the Affected Path Is an OBS PathChecking Whether the Affected Path Is AvailableSummary and Suggestio", + "desc":"If a training job failed, error message \"No such file or directory\" is displayed in logs.If a training input path is unreachable, error message \"No such file or directory", "product_code":"modelarts", "title":"Error Message \"No such file or directory\" Displayed in Training Job Logs", "uri":"modelarts_trouble_0014.html", "doc_type":"usermanual", - "p_code":"274", - "code":"280" + "p_code":"486", + "code":"491" }, { - "desc":"During the execution of a ModelArts training job, the following error message is displayed in the log and the training failed:The CUDA version of the .so file generated d", - "product_code":"modelarts", - "title":"Failed to Find the .so File During Training", - "uri":"modelarts_13_0044.html", - "doc_type":"usermanual", - "p_code":"274", - "code":"281" - }, - { - "desc":"The ModelArts training job failed to parse parameters, and the following error occurs:The parameters are not defined.In the training environment, the system may pass para", + "desc":"The ModelArts training job failed to parse parameters, and the following error occurs:In the training environment, the system may transfer other parameter names that are ", "product_code":"modelarts", "title":"Failed to Parse Parameters and Log Error Occurs", "uri":"modelarts_13_0012.html", "doc_type":"usermanual", - "p_code":"274", - "code":"282" + "p_code":"486", + "code":"492" }, { "desc":"The following error message is displayed when a training job is created: Operation failed. Other running job contain train_url: /bucket-20181114/code_hxm/According to the", "product_code":"modelarts", - "title":"Training Output Path Used by Another Job", + "title":"Training Output Path Is Used by Another Job", "uri":"modelarts_13_0029.html", "doc_type":"usermanual", - "p_code":"274", - "code":"283" + "p_code":"486", + "code":"493" }, { - "desc":"When a custom image was used to create a training job of the old version, error message \"No such file or directory\" was displayed.The directory of the boot file for runni", + "desc":"When a custom image is used to create a training job of the old version, error message \"No such file or directory\" is displayed.The directory of the boot file for running", "product_code":"modelarts", "title":"Failed to Find the Boot File When a Training Job Is Created Using a Custom Image", "uri":"modelarts_13_0013.html", "doc_type":"usermanual", - "p_code":"274", - "code":"284" + "p_code":"486", + "code":"494" }, { - "desc":"When a PyTorch 1.0 image is used, the following error message is displayed:\"RuntimeError: std::exception\"The possible causes are as follows:The soft link of libmkldnn in ", + "desc":"When a PyTorch 1.0 image is used, the following error message is displayed:\"RuntimeError: std::exception\"The soft link of libmkldnn in the PyTorch 1.0 image conflicts wit", "product_code":"modelarts", "title":"Error Message \"RuntimeError: std::exception\" Displayed for a PyTorch 1.0 Engine", "uri":"modelarts_trouble_0036.html", "doc_type":"usermanual", - "p_code":"274", - "code":"285" + "p_code":"486", + "code":"495" }, { "desc":"When MindSpore is used for training, the following error message is displayed:[ERROR] RUNTIME(3002)model execute error, retCode=0x91, [the model stream execute failed]The", @@ -2570,17 +4460,17 @@ "title":"Error Message \"retCode=0x91, [the model stream execute failed]\" Displayed in MindSpore Logs", "uri":"modelarts_trouble_0054.html", "doc_type":"usermanual", - "p_code":"274", - "code":"286" + "p_code":"486", + "code":"496" }, { - "desc":"If MoXing is used to adapt to an OBS path, an error occurred when Pandas of a later version read data from an OBS file.1. 'can't decode byte xxx in position xxx'\n2. 'OSEr", + "desc":"If MoXing is used to adapt to an OBS path, an error occurs when pandas of a later version reads data from an OBS file.1. 'can't decode byte xxx in position xxx'\n2. 'OSErr", "product_code":"modelarts", "title":"Error Occurred When Pandas Reads Data from an OBS File If MoXing Is Used to Adapt to an OBS Path", "uri":"modelarts_trouble_0033.html", "doc_type":"usermanual", - "p_code":"274", - "code":"287" + "p_code":"486", + "code":"497" }, { "desc":"Dependency conflicts occur when other packages are installed. There are special requirements on the NumPy library. However, NumPy cannot be uninstalled. The error message", @@ -2588,17 +4478,35 @@ "title":"Error Message \"Please upgrade numpy to >= xxx to use this pandas version\" Displayed in Logs", "uri":"modelarts_trouble_0052.html", "doc_type":"usermanual", - "p_code":"274", - "code":"288" + "p_code":"486", + "code":"498" }, { - "desc":"An error occurred after the engine version was reinstalled or a new CUDA package was compiled based on the existing image.1. \"RuntimeError: cuda runtime error (11) : inva", + "desc":"An error occurs after the engine version is reinstalled or a new CUDA package is compiled based on the existing image.1. \"RuntimeError: cuda runtime error (11) : invalid ", "product_code":"modelarts", "title":"Reinstalled CUDA Version Does Not Match the One in the Target Image", "uri":"modelarts_trouble_0047.html", "doc_type":"usermanual", - "p_code":"274", - "code":"289" + "p_code":"486", + "code":"499" + }, + { + "desc":"When a training job is created, error code ModelArts.2763 is displayed, indicating that the selected instance is invalid.The selected training flavor does not match the a", + "product_code":"modelarts", + "title":"Error ModelArts.2763 Occurred During Training Job Creation", + "uri":"modelarts_13_0159.html", + "doc_type":"usermanual", + "p_code":"486", + "code":"500" + }, + { + "desc":"After a training job is created, the system container exits unexpectedly.The possible causes are as follows:An error occurred in OBS.Unavailable file: The specified key d", + "product_code":"modelarts", + "title":"System Container Exits Unexpectedly", + "uri":"modelarts_trouble_0141.html", + "doc_type":"usermanual", + "p_code":"486", + "code":"501" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -2606,17 +4514,8 @@ "title":"Memory Limit Issues", "uri":"modelarts_13_0072.html", "doc_type":"usermanual", - "p_code":"264", - "code":"290" - }, - { - "desc":"When data, code, or a model was copied during training, the following error message was displayed.The possible causes are as follows:The disk space is insufficient.When a", - "product_code":"modelarts", - "title":"Downloading Files Timed Out or No Space Left for Reading Data", - "uri":"modelarts_13_0011.html", - "doc_type":"usermanual", - "p_code":"290", - "code":"291" + "p_code":"477", + "code":"502" }, { "desc":"When a ModelArts training job is running, the following error is reported in the log. As a result, data cannot be copied to the container.The container space is insuffici", @@ -2624,62 +4523,53 @@ "title":"Insufficient Container Space for Copying Data", "uri":"modelarts_13_0043.html", "doc_type":"usermanual", - "p_code":"290", - "code":"292" + "p_code":"502", + "code":"503" }, { "desc":"During training job creation, error message \"No space left\" is displayed when a TensorFlow multi-node job downloads data to /cache.In a TensorFlow multi-node job, the par", "product_code":"modelarts", - "title":"Error Message \"No space left\" Displayed When a Multi-node TensorFlow Job Downloads Data to /cache", + "title":"Error Message \"No space left\" Displayed When a TensorFlow Multi-node Job Downloads Data to /cache", "uri":"modelarts_13_0025.html", "doc_type":"usermanual", - "p_code":"290", - "code":"293" + "p_code":"502", + "code":"504" }, { "desc":"An error occurs during the running of a ModelArts training job, indicating that the size of the log file has reached the limit.Error information indicates that the size o", "product_code":"modelarts", - "title":"Log File Size Reached the Upper Limit", + "title":"Size of the Log File Has Reached the Limit", "uri":"modelarts_13_0032.html", "doc_type":"usermanual", - "p_code":"290", - "code":"294" + "p_code":"502", + "code":"505" }, { - "desc":"During the program's execution, numerous \"write line error\" messages are generated. This issue recurred each time the program ran at a specific progress.The possible caus", + "desc":"During program running, a large number of error messages \"write line error\" are generated. This issue recurs each time the program runs at a specific progress.The possibl", "product_code":"modelarts", "title":"Error Message \"write line error\" Displayed in Logs", "uri":"modelarts_trouble_0031.html", "doc_type":"usermanual", - "p_code":"290", - "code":"295" + "p_code":"502", + "code":"506" }, { - "desc":"When data, code, or a model was copied during training, the following error message was displayed.The possible causes are as follows:The disk space is insufficient.When a", - "product_code":"modelarts", - "title":"Error Message \"No space left on device\" Displayed in Logs", - "uri":"modelarts_trouble_0041.html", - "doc_type":"usermanual", - "p_code":"290", - "code":"296" - }, - { - "desc":"If a training job failed due to out of memory (OOM), possible symptoms were as follows:Error code 137 is returned.The log file contained error information with keyword ki", + "desc":"If a training job failed due to out of memory (OOM), possible symptoms as as follows:Error code 137 is returned.The log file contains error information with keyword kille", "product_code":"modelarts", "title":"Training Job Failed Due to OOM", "uri":"modelarts_trouble_0044.html", "doc_type":"usermanual", - "p_code":"290", - "code":"297" + "p_code":"502", + "code":"507" }, { - "desc":"Executing a training job failed, and there is no error message in user logs. The error information is displayed in the Kubernetes job body.The possible causes are as foll", + "desc":"This section centrally describes common issues related to insufficient disk space and solutions to these issues.When data, code, or model is copied during training, error", "product_code":"modelarts", - "title":"Error Message \"Pod The node was low on resource:[DiskPressure]\" Displayed in the Kubernetes Job Body", - "uri":"modelarts_trouble_0040.html", + "title":"Common Issues Related to Insufficient Disk Space and Solutions", + "uri":"modelarts_trouble_0142.html", "doc_type":"usermanual", - "p_code":"290", - "code":"298" + "p_code":"502", + "code":"508" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -2687,17 +4577,17 @@ "title":"Internet Access Issues", "uri":"modelarts_13_0077.html", "doc_type":"usermanual", - "p_code":"264", - "code":"299" + "p_code":"477", + "code":"509" }, { - "desc":"When PyTorch is used, the following error message is displayed in logs after pretrained in torchvision.models is set to True:'OSError: [Errno 101] Network is unreachable'", + "desc":"When PyTorch is used, the following error message will be displayed in logs after pretrained in torchvision.models is set to True:'OSError: [Errno 101] Network is unreach", "product_code":"modelarts", "title":"Error Message \"Network is unreachable\" Displayed in Logs", "uri":"modelarts_trouble_0034.html", "doc_type":"usermanual", - "p_code":"299", - "code":"300" + "p_code":"509", + "code":"510" }, { "desc":"In a running training job, a URL connection timeout error occurs.For security purposes, ModelArts is not allowed to access the Internet to download data.Download the requ", @@ -2705,8 +4595,8 @@ "title":"URL Connection Timed Out in a Running Training Job", "uri":"modelarts_13_0021.html", "doc_type":"usermanual", - "p_code":"299", - "code":"301" + "p_code":"509", + "code":"511" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -2714,17 +4604,17 @@ "title":"Permission Issues", "uri":"modelarts_13_0078.html", "doc_type":"usermanual", - "p_code":"264", - "code":"302" + "p_code":"477", + "code":"512" }, { - "desc":"When a training job accessed OBS, an error occurred.The possible causes are as follows (see Python > Troubleshooting > OBS Server-Side Error Codes in Object Storage Servi", + "desc":"When a training job accesses OBS, an error occurs.The possible causes are as follows:The OBS permission is incorrect. As a result, data cannot be read.Verify that OBS per", "product_code":"modelarts", - "title":"Error Message \"reason:Forbidden\" Displayed in Logs", + "title":"What Should I Do If Error \"stat:403 reason:Forbidden\" Is Displayed in Logs When a Training Job Accesses OBS", "uri":"modelarts_trouble_0045.html", "doc_type":"usermanual", - "p_code":"302", - "code":"303" + "p_code":"512", + "code":"513" }, { "desc":"When a training job accesses the attached EFS disks or executes the .sh boot script, an error occurs.[Errno 13]Permission denied: '/xxx/xxxx'Error logbash: /bin/ln: Permi", @@ -2732,8 +4622,8 @@ "title":"Error Message \"Permission denied\" Displayed in Logs", "uri":"modelarts_trouble_0046.html", "doc_type":"usermanual", - "p_code":"302", - "code":"304" + "p_code":"512", + "code":"514" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -2741,8 +4631,8 @@ "title":"GPU Issues", "uri":"modelarts_13_0079.html", "doc_type":"usermanual", - "p_code":"264", - "code":"305" + "p_code":"477", + "code":"515" }, { "desc":"An error similar to the following occurs during the running of the program:1. 'failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected'\n2. 'No CU", @@ -2750,44 +4640,44 @@ "title":"Error Message \"No CUDA-capable device is detected\" Displayed in Logs", "uri":"modelarts_trouble_0032.html", "doc_type":"usermanual", - "p_code":"305", - "code":"306" + "p_code":"515", + "code":"516" }, { - "desc":"When PyTorch was used for distributed training, the following error occurred.The possible causes are as follows:If data had been copied before this issue occurred, data r", + "desc":"When PyTorch is used for distributed training, the following error occurs.If data is copied before this issue occurs, data copy on all nodes is not complete at the same t", "product_code":"modelarts", "title":"Error Message \"RuntimeError: connect() timed out\" Displayed in Logs", "uri":"modelarts_trouble_0043.html", "doc_type":"usermanual", - "p_code":"305", - "code":"307" + "p_code":"515", + "code":"517" }, { - "desc":"A training job failed, and the following error was printed in logs.The possible causes are as follows:The CUDA_VISIBLE_DEVICES setting does not comply with job specificat", + "desc":"A training job failed, and the following error is displayed in logs.The possible causes are as follows:The CUDA_VISIBLE_DEVICES setting does not comply with job specifica", "product_code":"modelarts", "title":"Error Message \"cuda runtime error (10) : invalid device ordinal at xxx\" Displayed in Logs", "uri":"modelarts_trouble_0049.html", "doc_type":"usermanual", - "p_code":"305", - "code":"308" + "p_code":"515", + "code":"518" }, { - "desc":"When PyTorch was used to start multiple processes, the following error message was displayed:RuntimeError: Cannot re-initialize CUDA in forked subprocessThe possible caus", + "desc":"When PyTorch is used to start multiple processes, the following error message is displayed:RuntimeError: Cannot re-initialize CUDA in forked subprocessThe multi-processin", "product_code":"modelarts", "title":"Error Message \"RuntimeError: Cannot re-initialize CUDA in forked subprocess\" Displayed in Logs", "uri":"modelarts_trouble_0051.html", "doc_type":"usermanual", - "p_code":"305", - "code":"309" + "p_code":"515", + "code":"519" }, { "desc":"The following error message is displayed during the running of a ModelArts training job:According to error information, the error cause is that the training job running p", "product_code":"modelarts", - "title":"No GPU Detected in a Training Job", + "title":"No GPU Is Found for a Training Job", "uri":"modelarts_13_0033.html", "doc_type":"usermanual", - "p_code":"305", - "code":"310" + "p_code":"515", + "code":"520" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", @@ -2795,35 +4685,26 @@ "title":"Service Code Issues", "uri":"modelarts_13_0073.html", "doc_type":"usermanual", - "p_code":"264", - "code":"311" + "p_code":"477", + "code":"521" }, { - "desc":"When Pandas was used to read CSV data, the following error was printed in logs, and the training job failed:pandas.errors.ParserError: Error tokenizing data. C error: Exp", + "desc":"When pandas is used to read CSV data, the following error is displayed in logs, and the training job failed:pandas.errors.ParserError: Error tokenizing data. C error: Exp", "product_code":"modelarts", "title":"Error Message \"pandas.errors.ParserError: Error tokenizing data. C error: Expected .* fields\" Displayed in Logs", "uri":"modelarts_trouble_0050.html", "doc_type":"usermanual", - "p_code":"311", - "code":"312" + "p_code":"521", + "code":"522" }, { - "desc":"After PyTorch 1.3 was upgraded to 1.4, the following error message was displayed:\"RuntimeError:max_pool2d_with_indices_out_cuda_frame failed with error code 0\"The possibl", + "desc":"After PyTorch 1.3 is upgraded to 1.4, the following error message is displayed:\"RuntimeError:max_pool2d_with_indices_out_cuda_frame failed with error code 0\"The PyTorch 1", "product_code":"modelarts", "title":"Error Message \"max_pool2d_with_indices_out_cuda_frame failed with error code 0\" Displayed in Logs", "uri":"modelarts_trouble_0037.html", "doc_type":"usermanual", - "p_code":"311", - "code":"313" - }, - { - "desc":"The training job failed, and error code 139 is returned.The possible causes are as follows:Certain pip packages in the pip source have been updated, leading to data incom", - "product_code":"modelarts", - "title":"Training Job Failed with Error Code 139", - "uri":"modelarts_trouble_0039.html", - "doc_type":"usermanual", - "p_code":"311", - "code":"314" + "p_code":"521", + "code":"523" }, { "desc":"Before creating a training job, use the ModelArts development environment to debug the training code to maximally eliminate errors in code migration.", @@ -2831,89 +4712,116 @@ "title":"Debugging Training Code in the Cloud Environment If a Training Job Failed", "uri":"modelarts_trouble_0057.html", "doc_type":"usermanual", - "p_code":"311", - "code":"315" + "p_code":"521", + "code":"524" }, { - "desc":"The following error message was displayed during training:TypeError: '(slice(0, 13184, None), slice(None, None, None))' is an invalid keyThe possible causes are as follow", + "desc":"The following error message is displayed during training:TypeError: '(slice(0, 13184, None), slice(None, None, None))' is an invalid keyThe data selected for segmentation", "product_code":"modelarts", "title":"Error Message \"'(slice(0, 13184, None), slice(None, None, None))' is an invalid key\" Displayed in Logs", "uri":"modelarts_trouble_0059.html", "doc_type":"usermanual", - "p_code":"311", - "code":"316" + "p_code":"521", + "code":"525" }, { - "desc":"The following error message was displayed during training:DataFrame.dtypes for data must be int, float or boolThe possible causes are as follows:The training data is not ", + "desc":"The following error message is displayed during training:DataFrame.dtypes for data must be int, float or boolThe training data is not of the int, float, or bool type.Run ", "product_code":"modelarts", "title":"Error Message \"DataFrame.dtypes for data must be int, float or bool\" Displayed in Logs", "uri":"modelarts_trouble_0058.html", "doc_type":"usermanual", - "p_code":"311", - "code":"317" + "p_code":"521", + "code":"526" }, { - "desc":"The following error message was displayed during PyTorch training:RuntimeError: cuDNN error: CUDNN_STATUS_NOT_SUPPORTED. This error may appear if you passed in a non-cont", + "desc":"The following error message is displayed during PyTorch training:RuntimeError: cuDNN error: CUDNN_STATUS_NOT_SUPPORTED. This error may appear if you passed in a non-conti", "product_code":"modelarts", - "title":"Error Message \"CUDNN_STATUS_NOT_SUPPORTED.\" Is Printed in Logs", + "title":"Error Message \"CUDNN_STATUS_NOT_SUPPORTED\" Displayed in Logs", "uri":"modelarts_trouble_0056.html", "doc_type":"usermanual", - "p_code":"311", - "code":"318" + "p_code":"521", + "code":"527" }, { - "desc":"When pandas.to_datetime was used to convert time, the following error message was displayed:pandas._libs.tslibs.np_datetime.OutOfBoundsDatetime: Out of bounds nanosecond ", + "desc":"When pandas.to_datetime is used to convert time, the following error message is displayed:pandas._libs.tslibs.np_datetime.OutOfBoundsDatetime: Out of bounds nanosecond ti", "product_code":"modelarts", "title":"Error Message \"Out of bounds nanosecond timestamp\" Displayed in Logs", "uri":"modelarts_trouble_0053.html", "doc_type":"usermanual", - "p_code":"311", - "code":"319" + "p_code":"521", + "code":"528" }, { - "desc":"After Keras was upgraded to 2.3.0 or later, the following error message was displayed:TypeError: Unexpected keyword argument passed to optimizer: learning_rateThe possibl", + "desc":"After Keras is upgraded to 2.3.0 or later, the following error message is displayed:TypeError: Unexpected keyword argument passed to optimizer: learning_rateCertain param", "product_code":"modelarts", "title":"Error Message \"Unexpected keyword argument passed to optimizer\" Displayed in Logs", "uri":"modelarts_trouble_0055.html", "doc_type":"usermanual", - "p_code":"311", - "code":"320" + "p_code":"521", + "code":"529" }, { - "desc":"An NCCL debug log level is set in a distributed job executed using a PyTorch image.import os\nos.environ[\"NCCL_DEBUG\"] = \"INFO\"The following error message was displayed.Th", + "desc":"An NCCL debug log level is set in a distributed job executed using a PyTorch image.import os\nos.environ[\"NCCL_DEBUG\"] = \"INFO\"The following error message is displayed.The", "product_code":"modelarts", "title":"Error Message \"no socket interface found\" Displayed in Logs", "uri":"modelarts_trouble_0038.html", "doc_type":"usermanual", - "p_code":"311", - "code":"321" + "p_code":"521", + "code":"530" + }, + { + "desc":"During the running of a training job, error message \"Runtimeerror: Dataloader worker (pid 46212) is killed by signal: Killed BP\" is displayed in logs.The Dataloader proce", + "product_code":"modelarts", + "title":"Error Message \"Runtimeerror: Dataloader worker (pid 46212) is killed by signal: Killed BP\" Displayed in Logs", + "uri":"modelarts_trouble_0060.html", + "doc_type":"usermanual", + "p_code":"521", + "code":"531" + }, + { + "desc":"Code can run properly in the notebook Keras image. When tensorflow.keras is used for training, error message \"AttributeError: 'NoneType' object has no attribute 'dtype'\" ", + "product_code":"modelarts", + "title":"Error Message \"AttributeError: 'NoneType' object has no attribute 'dtype'\" Displayed in Logs", + "uri":"modelarts_trouble_0063.html", + "doc_type":"usermanual", + "p_code":"521", + "code":"532" + }, + { + "desc":"After the configuration file of the Tacotron 2 model downloaded from the master branch of MindSpore open-source Gitee is modified and then uploaded to ModelArts for train", + "product_code":"modelarts", + "title":"Error Message \"No module name 'unidecode'\" Displayed in Logs", + "uri":"modelarts_trouble_0064.html", + "doc_type":"usermanual", + "p_code":"521", + "code":"533" }, { "desc":"The following error occurs when tf.variable is used across multiple machines and multiple GPUs: WARNING:tensorflow:Gradient is None for variable:v0/tower_0/UNET_v7/sub_pi", "product_code":"modelarts", - "title":"tf.variable Unavailable for Distributed TensorFlow", + "title":"Distributed Tensorflow Cannot Use tf.variable", "uri":"modelarts_13_0016.html", "doc_type":"usermanual", - "p_code":"311", - "code":"322" + "p_code":"521", + "code":"534" }, { "desc":"When kv_store = mxnet.kv.create('dist_async') is used to create kvstore, the program is blocked. For example, run the following code. If end is not displayed, the program", "product_code":"modelarts", - "title":"Creating a KVStore Using MXNet Blocked and No Error Reported", + "title":"When MXNet Creates kvstore, the Program Is Blocked and No Error Is Reported", "uri":"modelarts_13_0026.html", "doc_type":"usermanual", - "p_code":"311", - "code":"323" + "p_code":"521", + "code":"535" }, { "desc":"The following error occurs during the running of the training job log: RuntimeError: CUDA error: uncorrectable ECC error encounteredIf a job fails to be executed due to a", "product_code":"modelarts", - "title":"Training Job Failed Due to an ECC Error", + "title":"ECC Error Occurs in the Log, Causing Training Job Failure", "uri":"modelarts_13_0028.html", "doc_type":"usermanual", - "p_code":"311", - "code":"324" + "p_code":"521", + "code":"536" }, { "desc":"An error occurs for a ModelArts training job.The training failed because the recursion depth exceeded the default recursion depth of Python.If the maximum recursion depth", @@ -2921,8 +4829,8 @@ "title":"Training Job Failed Because the Maximum Recursion Depth Is Exceeded", "uri":"modelarts_13_0034.html", "doc_type":"usermanual", - "p_code":"311", - "code":"325" + "p_code":"521", + "code":"537" }, { "desc":"When a training job is created using a built-in algorithm, the training failed with the following error message in the log:Non-rectangles are used for labeling training s", @@ -2930,26 +4838,26 @@ "title":"Training Using a Built-in Algorithm Failed Due to a bndbox Error", "uri":"modelarts_13_0041.html", "doc_type":"usermanual", - "p_code":"311", - "code":"326" + "p_code":"521", + "code":"538" }, { "desc":"When Algorithm Source is set to Custom during training job creation, the training job status is Reviewing Job Initialization.When a custom image is running for the first ", "product_code":"modelarts", - "title":"Training Job in \"Reviewing Job Initialization\" State", + "title":"Training Job Status Is Reviewing Job Initialization", "uri":"modelarts_13_0030.html", "doc_type":"usermanual", - "p_code":"311", - "code":"327" + "p_code":"521", + "code":"539" }, { - "desc":"The training fails and the following error information is displayed in the log.According to the log, the exit code of the training job is 137. The training process starts", + "desc":"Running a training job failed, and error information similar to the following is displayed in logs:According to the log, the exit code of the training job is 137. The tra", "product_code":"modelarts", "title":"Training Job Process Exits Unexpectedly", "uri":"modelarts_13_0074.html", "doc_type":"usermanual", - "p_code":"311", - "code":"328" + "p_code":"521", + "code":"540" }, { "desc":"The training job process is stopped and the logs are interrupted.CPU soft lockThe decompression of a large number of files may cause CPU soft lock and node restart. You c", @@ -2957,16 +4865,376 @@ "title":"Stopped Training Job Process", "uri":"modelarts_13_0075.html", "doc_type":"usermanual", - "p_code":"311", - "code":"329" + "p_code":"521", + "code":"541" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Training Job Suspended", + "uri":"modelarts_trouble_0109.html", + "doc_type":"usermanual", + "p_code":"477", + "code":"542" + }, + { + "desc":"The system stops responding when mox.file.copy_parallel is called to copy data.Run the following commands to copy files or folders:import moxing as mox\nmox.file.set_auth(", + "product_code":"modelarts", + "title":"Suspension in Data Copy", + "uri":"modelarts_trouble_0110.html", + "doc_type":"usermanual", + "p_code":"542", + "code":"543" + }, + { + "desc":"If a job is trained on multiple nodes and suspension occurs before the job starts, add os.environ[\"NCCL_DEBUG\"] = \"INFO\" to the code to view the NCCL debugging informatio", + "product_code":"modelarts", + "title":"Suspension Before Training", + "uri":"modelarts_trouble_0111.html", + "doc_type":"usermanual", + "p_code":"542", + "code":"544" + }, + { + "desc":"According to the logs of the nodes on which a training job runs, an error occurred on a node but the job did not exit, leading to the job suspension.Check the error cause", + "product_code":"modelarts", + "title":"Suspension During Training", + "uri":"modelarts_trouble_0112.html", + "doc_type":"usermanual", + "p_code":"542", + "code":"545" + }, + { + "desc":"Logs showed that an error occurred in split data. As a result, processes are in different epochs, and uncompleted processes are suspended because they do not receive resp", + "product_code":"modelarts", + "title":"Suspension in the Last Training Epoch", + "uri":"modelarts_trouble_0113.html", + "doc_type":"usermanual", + "p_code":"542", + "code":"546" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Training Jobs Created in a Dedicated Resource Pool", + "uri":"modelarts_trouble_0131.html", + "doc_type":"usermanual", + "p_code":"477", + "code":"547" + }, + { + "desc":"On the page for creating a training job, there is no option for the cloud storage and mount path.The network of the target dedicated resource pool is not connected, or no", + "product_code":"modelarts", + "title":"No Cloud Storage Name or Mount Path Displayed on the Page for Creating a Training Job", + "uri":"modelarts_trouble_0132.html", + "doc_type":"usermanual", + "p_code":"547", + "code":"548" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Inference Deployment", + "uri":"modelarts_13_0122.html", + "doc_type":"usermanual", + "p_code":"433", + "code":"549" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"AI Application Management", + "uri":"modelarts_13_0203.html", + "doc_type":"usermanual", + "p_code":"549", + "code":"550" + }, + { + "desc":"I used a base image to import AI applications through OBS and wrote some inference code for implementing the inference logic. After an error occurred, I attempted to use ", + "product_code":"modelarts", + "title":"Failed to Obtain Certain Logs on the ModelArts Log Query Page", + "uri":"modelarts_13_0208.html", + "doc_type":"usermanual", + "p_code":"550", + "code":"551" + }, + { + "desc":"When I used a custom image to create an AI application, the creation failed.Possible causes are as follows:The URL of the image used for importing the AI application is i", + "product_code":"modelarts", + "title":"Failed to Use a Custom Image to Create an AI application", + "uri":"modelarts_13_0210.html", + "doc_type":"usermanual", + "p_code":"550", + "code":"552" + }, + { + "desc":"When an imported AI application is used to deploy a service, the system displays a message indicating that the idle disk space is insufficient for service deployment.Mode", + "product_code":"modelarts", + "title":"Restrictions on the Size of an Image for Importing an AI Application", + "uri":"modelarts_13_0211.html", + "doc_type":"usermanual", + "p_code":"550", + "code":"553" + }, + { + "desc":"After an AI application is created, an error occurred when it is deployed as a service.When an AI application is imported using a custom or base image, many service logic", + "product_code":"modelarts", + "title":"Error Occurred When a Created AI Application Is Deployed as a Service", + "uri":"modelarts_13_0212.html", + "doc_type":"usermanual", + "p_code":"550", + "code":"554" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Service Deployment", + "uri":"modelarts_13_0213.html", + "doc_type":"usermanual", + "p_code":"549", + "code":"555" + }, + { + "desc":"A model fails to be deployed as a real-time service. On the real-time service details page, the message \"failed to pull image, retry later\" is displayed on the Events tab", + "product_code":"modelarts", + "title":"Error Occurred When a Custom Image Model Is Deployed as a Real-Time Service", + "uri":"modelarts_13_0062.html", + "doc_type":"usermanual", + "p_code":"555", + "code":"556" + }, + { + "desc":"A deployed real-time service is in the Alarm state.The prediction using a real-time service that is in the Alarm state may fail. Perform the following operations to locat", + "product_code":"modelarts", + "title":"Alarm Status of a Deployed Real-Time Service", + "uri":"modelarts_13_0065.html", + "doc_type":"usermanual", + "p_code":"555", + "code":"557" + }, + { + "desc":"A service retains in the Deploying state. No obvious error is found in AI application logs.The AI application port is typically incorrect. Check whether the port for crea", + "product_code":"modelarts", + "title":"Service Is Consistently Being Deployed", + "uri":"modelarts_05_3187.html", + "doc_type":"usermanual", + "p_code":"555", + "code":"558" + }, + { + "desc":"The traffic for prediction is not heavy, but the following error frequently occurs:Backend service internal error. Backend service read timed outSend the request from gat", + "product_code":"modelarts", + "title":"A Started Service Is Intermittently in the Alarm State", + "uri":"modelarts_05_3188.html", + "doc_type":"usermanual", + "p_code":"555", + "code":"559" + }, + { + "desc":"Deploying a service failed. The system displays error message \"No Module named XXX\".\"No Module named XXX\" indicates that the dependency module is not imported to the mode", + "product_code":"modelarts", + "title":"Failed to Deploy a Service and Error \"No Module named XXX\" Occurred", + "uri":"modelarts_05_3189.html", + "doc_type":"usermanual", + "p_code":"555", + "code":"560" + }, + { + "desc":"An input/output path is unavailable, and the following error message is displayed:\"error_code\": \"ModelArts.3551\",\n\"error_msg\": \"OBS path xxxx does not exist.\"When the acc", + "product_code":"modelarts", + "title":"Insufficient Permission to or Unavailable Input/Output OBS Path of a Batch Service", + "uri":"modelarts_13_0251.html", + "doc_type":"usermanual", + "p_code":"555", + "code":"561" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"Service Prediction", + "uri":"modelarts_13_0215.html", + "doc_type":"usermanual", + "p_code":"549", + "code":"562" + }, + { + "desc":"After a real-time service is deployed and running, an inference request is sent to the service, but the inference failed.Service prediction involves multiple phases, incl", + "product_code":"modelarts", + "title":"Service Prediction Failed", + "uri":"modelarts_13_0216.html", + "doc_type":"usermanual", + "p_code":"562", + "code":"563" + }, + { + "desc":"A request is intercepted on API Gateway due to a fault, and error \"APIG.XXXX\" occurs.Rectify the fault by referring to the methods provided in the following typical cases", + "product_code":"modelarts", + "title":"Error \"APIG.XXXX\" Occurred in a Prediction Failure", + "uri":"modelarts_05_3204.html", + "doc_type":"usermanual", + "p_code":"562", + "code":"564" + }, + { + "desc":"After a real-time service is deployed and running, an inference request is sent to the service, but error ModelArts.4206 occurred.ModelArts.4206 indicates that the reques", + "product_code":"modelarts", + "title":"Error ModelArts.4206 Occurred in Real-Time Service Prediction", + "uri":"modelarts_13_0217.html", + "doc_type":"usermanual", + "p_code":"562", + "code":"565" + }, + { + "desc":"After a real-time service is deployed and running, an inference request is sent to the service, but error ModelArts.4302 occurred.Error ModelArts.4302 may occur in multip", + "product_code":"modelarts", + "title":"Error ModelArts.4302 Occurred in Real-Time Service Prediction", + "uri":"modelarts_13_0218.html", + "doc_type":"usermanual", + "p_code":"562", + "code":"566" + }, + { + "desc":"After a real-time service is deployed and running, an inference request is sent to the service, but error ModelArts.4503 occurred.Error ModelArts.4503 may occur in multip", + "product_code":"modelarts", + "title":"Error ModelArts.4503 Occurred in Real-Time Service Prediction", + "uri":"modelarts_13_0219.html", + "doc_type":"usermanual", + "p_code":"562", + "code":"567" + }, + { + "desc":"During the prediction in a running real-time service, error { \"erno\": \"MR.0105\", \"msg\": \"Recognition failed\",\"words_result\": {}} occurred.Locate the fault by analyzing th", + "product_code":"modelarts", + "title":"Error MR.0105 Occurred in Real-Time Service Prediction", + "uri":"modelarts_13_0192.html", + "doc_type":"usermanual", + "p_code":"562", + "code":"568" + }, + { + "desc":"Error message \"Method Not Allowed\" is displayed during service prediction.The APIs registered by default for service prediction must be called using POST. If you use GET,", + "product_code":"modelarts", + "title":"Method Not Allowed", + "uri":"modelarts_13_0220.html", + "doc_type":"usermanual", + "p_code":"562", + "code":"569" + }, + { + "desc":"A service prediction request timed out.If a request times out, there is a high probability that the request is intercepted by API Gateway. Check the API Gateway and model", + "product_code":"modelarts", + "title":"Request Timed Out", + "uri":"modelarts_13_0221.html", + "doc_type":"usermanual", + "p_code":"562", + "code":"570" + }, + { + "desc":"If an error occurs when an API is called for service deployment, check the following items:Check whether POST is used in the configuration file for the model API.Check wh", + "product_code":"modelarts", + "title":"Error Occurred When an API Is Called for Deploying a Model Created Using a Custom Image", + "uri":"modelarts_05_3186.html", + "doc_type":"usermanual", + "p_code":"562", + "code":"571" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"MoXing", + "uri":"modelarts_13_0035.html", + "doc_type":"usermanual", + "p_code":"433", + "code":"572" + }, + { + "desc":"Call moxing.file.copy_parallel() to copy a file from the development environment to a bucket. However, the target file does not appear in the bucket.An error occurs when ", + "product_code":"modelarts", + "title":"Error Occurs When MoXing Is Used to Copy Data", + "uri":"modelarts_13_0036.html", + "doc_type":"usermanual", + "p_code":"572", + "code":"573" + }, + { + "desc":"When the TensorFlow version of the training job Mox is running, 50 steps are executed for four times before the job is formally running.Warmup indicates a process of usin", + "product_code":"modelarts", + "title":"How Do I Disable the Warmup Function of the Mox?", + "uri":"modelarts_13_0024.html", + "doc_type":"usermanual", + "p_code":"572", + "code":"574" + }, + { + "desc":"The Pytorch engine of a frequently-used framework is used as an algorithm source of a ModelArts training job. During the running of the training job, Mox versions for eac", + "product_code":"modelarts", + "title":"Pytorch Mox Logs Are Repeatedly Generated", + "uri":"modelarts_13_0010.html", + "doc_type":"usermanual", + "p_code":"572", + "code":"575" + }, + { + "desc":"When MoXing is used to train a model, global_step is placed in the Adam name range. The non-MoXing code does not contain the Adam name range. See Figure 1. In the figure,", + "product_code":"modelarts", + "title":"Does moxing.tensorflow Contain the Entire TensorFlow? How Do I Perform Local Fine Tune on the Generated Checkpoint?", + "uri":"modelarts_13_0027.html", + "doc_type":"usermanual", + "p_code":"572", + "code":"576" + }, + { + "desc":"Copying data using MoXing is slow in a ModelArts training job.The log INFO:root:Listing OBS is repeatedly printed.Repeated log printingThe possible causes for slow data c", + "product_code":"modelarts", + "title":"Copying Data Using MoXing Is Slow and the Log Is Repeatedly Printed in a Training Job", + "uri":"modelarts_13_0037.html", + "doc_type":"usermanual", + "p_code":"572", + "code":"577" + }, + { + "desc":"The folder cannot be accessed using MoXing.The folder size read by using get_size of MoXing is 0.To use MoXing to access a folder, you need to add the recursive=True para", + "product_code":"modelarts", + "title":"Failed to Access a Folder Using MoXing and Read the Folder Size Using get_size", + "uri":"modelarts_13_0038.html", + "doc_type":"usermanual", + "p_code":"572", + "code":"578" + }, + { + "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", + "product_code":"modelarts", + "title":"APIs or SDKs", + "uri":"modelarts_13_0197.html", + "doc_type":"usermanual", + "p_code":"433", + "code":"579" + }, + { + "desc":"When ModelArts SDKs are installed, the following error message is displayed: \"ERROR: Could not install packages due to an OSError: [WinError 2] The system cannot find the", + "product_code":"modelarts", + "title":"\"ERROR: Could not install packages due to an OSError\" Occurred During ModelArts SDK Installation", + "uri":"modelarts_13_0198.html", + "doc_type":"usermanual", + "p_code":"579", + "code":"580" + }, + { + "desc":"A ModelArts SDK was used to download a file from OBS, and the target path was set to the file name. No error was reported in the local IDE, but an error occurred when the", + "product_code":"modelarts", + "title":"Error Occurred During Service Deployment After the Target Path to a File Downloaded Through a ModelArts SDK Is Set to a File Name", + "uri":"modelarts_13_0199.html", + "doc_type":"usermanual", + "p_code":"579", + "code":"581" }, { "desc":"HUAWEI CLOUD Help Center presents technical documents to help you quickly get started with HUAWEI CLOUD services. The technical documents include Service Overview, Price Details, Purchase Guide, User Guide, API Reference, Best Practices, FAQs, and Videos.", "product_code":"modelarts", "title":"Change History", - "uri":"modelarts_04_0099.html", + "uri":"modelarts_77_0156.html", "doc_type":"usermanual", "p_code":"", - "code":"330" + "code":"582" } ] \ No newline at end of file diff --git a/docs/modelarts/umn/datalabel-modelarts_0002.html b/docs/modelarts/umn/datalabel-modelarts_0002.html new file mode 100644 index 00000000..ea76269d --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0002.html @@ -0,0 +1,104 @@ + + +

Introduction to Data Labeling

+

Model training requires a large amount of labeled data. Therefore, before training a model, label data. ModelArts offers data labeling functions to assist with this process.

+

Manual Labeling

Create a labeling job based on the dataset type. ModelArts supports the following types of labeling jobs:

+ +
+

Dataset Functions

Dataset functions vary depending on dataset types. For details, see Table 1.

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Table 1 Functions supported by different types of datasets

Dataset Type

+

Labeling Type

+

Manual Labeling

+

Image

+

Image classification

+

Yes

+

Object detection

+

Yes

+

Image segmentation

+

Yes

+

Audio

+

Sound classification

+

Yes

+

Speech Labeling

+

Yes

+

Speech Paragraph Labeling

+

Yes

+

Text

+

Text classification

+

Yes

+

Named entity recognition

+

Yes

+

Text Triplet

+

Yes

+

Videos

+

Video Labeling

+

Yes

+

Free format

+

-

+

-

+

Table

+

-

+

-

+
+
+
+
+
+ +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0003.html b/docs/modelarts/umn/datalabel-modelarts_0003.html new file mode 100644 index 00000000..971793c1 --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0003.html @@ -0,0 +1,25 @@ + + +

Manual Labeling

+
+
+ + + +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0004.html b/docs/modelarts/umn/datalabel-modelarts_0004.html new file mode 100644 index 00000000..fdeecc4e --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0004.html @@ -0,0 +1,156 @@ + + +

Creating a Labeling Job

+

Model training requires a large amount of labeled data. Therefore, before training a model, label data. You can create a manual labeling job labeled by one person or by a group of persons (team labeling), or enable auto labeling to quickly label images. You can also modify existing labels, or delete them and re-label.

+

Labeling Job Types

Create a labeling job based on the dataset type. ModelArts supports the following types of labeling jobs:

+ +
+

Prerequisites

Before labeling data, create a dataset.

+
+

Procedure

  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Label Data.
  2. On the Data Labeling page, click Create Labeling Job in the upper right corner. On the displayed page, create a labeling job.
    1. Enter basic information about the labeling job, including Name and Description.
    2. Select a labeling scene and type as required.
    3. Set the parameters based on the labeling job type. For details, see the parameters of the following labeling job types: +
    4. Click Create in the lower right corner of the page.

      After the labeling job is created, the data labeling management page is displayed. You can perform the following operations on the labeling job: start auto labeling, publish new versions, modify the labeling job, and delete the labeling job.

      +
    +
+
+

Images (Image Classification, Image Segmentation, and Object Detection)

+
+ + + + + + + + + + + + + +
Table 1 Parameters of an image labeling job

Name

+

Description

+

Dataset Name

+

Select a dataset that supports the labeling type.

+

Label Set

+
  • Label name: Enter a label name with 1 to 1024 characters.
  • Add Label: Click Add Label to add one or more labels.
  • Label color: Set label colors for object detection and image segmentation labeling jobs. Select a color from the color palette on the right of a label, or enter the hexadecimal color code to set the color.
  • Add Label Attribute: For an object detection labeling job, you can click the plus sign (+) on the right to add label attributes after setting a label color. Label attributes are used to distinguish different attributes of the objects with the same label.
+

Team Labeling

+

Enable or disable team labeling. Image segmentation does not support team labeling. Therefore, this parameter is unavailable when you use image segmentation.

+

After enabling team labeling, enter the type of the team labeling job, and select the labeling team and team members. For details about the parameters, see Creating a Team Labeling Job.

+

Before enabling team labeling, ensure that you have added a team and members on the Labeling Teams page. If no labeling team is available, click the link on the page to go to the Labeling Teams page, and add your team and members. For details, see Adding a Team.

+

After a dataset is created with team labeling enabled, you can view the Team Labeling mark in Labeling Type.

+
+
+
+

Audio (Sound Classification, Speech Labeling, and Speech Paragraph Labeling)

+
+ + + + + + + + + + + + + + + + + + + +
Table 2 Parameters of an audio labeling job

Parameter

+

Description

+

Dataset Name

+

Select a dataset that supports the labeling type.

+

Label Set (for sound classification)

+

You can add a label set for labeling jobs of sound classification.

+
  • Label name: Enter 1 to 1024 characters in the Label Set text box.
  • Add Label: Click Add Label to add one or more labels.
+

Label Management (for speech paragraph labeling)

+

Label management is available for speech paragraph labeling.

+
  • Single Label
    A single label is used to label a piece of audio that has only one class.
    • Label: Enter a label name, with 1 to 1024 characters.
    • Label Color: Set the label color in the Label Color column. You can select a color from the color palette or enter a hexadecimal color code to set the color.
    +
    +
  • Multiple Labels
    Multiple labels are suitable for multi-dimensional labeling. For example, you can label a piece of audio as both noise and speech. For speech, you can label the audio with different speakers. You can click Add Label Class to add multiple label classes. A label class can contain multiple labels. The label class and name can contain only letters, digits, periods (.), underscores (_), and hyphens (-). Only letters, digits, periods (.), underscores (_), and hyphens (-) are allowed.
    • Add Label Class: Enter a label class.
    • Label: Enter a label name.
    • Add Label: Click Add Label to add one or more labels.
    +
    +
+

Speech Labeling (for speech paragraph labeling)

+

Only datasets for speech paragraph labeling support speech labeling. By default, speech labeling is disabled. If this function is enabled, you can label speech content.

+

Team Labeling (for speech paragraph labeling)

+

Only datasets of speech paragraph labeling support team labeling.

+

After enabling team labeling, enter the type of the team labeling job, and select the labeling team and team members. For details about the parameters, see Creating a Team Labeling Job.

+

Before enabling team labeling, ensure that you have added a team and members on the Labeling Teams page. If no labeling team is available, click the link on the page to go to the Labeling Teams page, and add your team and members. For details, see Adding a Team.

+

After a dataset is created with team labeling enabled, you can view the Team Labeling mark in Labeling Type.

+
+
+
+

Text (Text Classification, Named Entity Recognition, and Text Triplet)

+
+ + + + + + + + + + + + + + + + +
Table 3 Parameters of a text labeling job

Parameter

+

Description

+

Dataset Name

+

Select a dataset that supports the labeling type.

+

Label Set (for text classification and named entity recognition)

+
  • Label name: Enter a label name with 1 to 1024 characters.
  • Add Label: Click Add Label to add one or more labels.
  • Label color: Select a color from the color palette or enter the hexadecimal color code to set the color.

    +
+

Label Set (for text triplet)

+

For datasets of the text triplet type, set entity labels and relationship labels.

+
  • Entity Label: Set the label name and label color. You can click the plus sign (+) on the right of the color area to add multiple labels.
  • Relationship Label: a relationship between two entities. Set the source entity and target entity. Therefore, add at least two entity labels before adding a relationship label.
+

Team Labeling

+

Enable or disable team labeling.

+

After enabling team labeling, enter the type of the team labeling job, and select the labeling team and team members. For details about the parameters, see Creating a Team Labeling Job.

+

Before enabling team labeling, ensure that you have added a team and members on the Labeling Teams page. If no labeling team is available, click the link on the page to go to the Labeling Teams page, and add your team and members. For details, see Adding a Team.

+

After a dataset is created with team labeling enabled, you can view the Team Labeling mark in Labeling Type.

+
+
+
+

Video

+
+ + + + + + + + + + +
Table 4 Parameters of a video labeling job

Name

+

Description

+

Dataset Name

+

Select a dataset that supports the labeling type.

+

Label Set

+
  • Label name: Enter a label name with 1 to 1024 characters.
  • Add Label: Click Add Label to add one or more labels.
  • Label color: Select a color from the color palette or enter the hexadecimal color code to set the color.
+
+
+
+
+
+ +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0005.html b/docs/modelarts/umn/datalabel-modelarts_0005.html new file mode 100644 index 00000000..06512324 --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0005.html @@ -0,0 +1,19 @@ + + +

Image Labeling

+
+
+ + + +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0006.html b/docs/modelarts/umn/datalabel-modelarts_0006.html new file mode 100644 index 00000000..3c93a41e --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0006.html @@ -0,0 +1,61 @@ + + +

Image Classification

+

Training a model uses a large number of labeled images. Therefore, label images before the model training. You can add labels to images by manual labeling or auto labeling. In addition, you can modify the labels of images, or remove their labels and label the images again.

+

Before labeling an image in image classification scenarios, pay attention to the following:

+ +

Starting Labeling

  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Label Data.
  2. On the right of the labeling job list, select a labeling type from the job type drop-down list. Click the job to be performed based on the labeling type. The details page of the job is displayed.
  3. The job details page displays all data of the labeling job.
+
+

Synchronizing New Data

ModelArts automatically synchronizes data and labeling information from datasets to the labeling job.

+

To quickly obtain the latest data in a dataset, in the All statuses, Unlabeled, or Labeled tab of the labeling job details page, click Synchronize New Data.

+
+

Filtering Data

In the All statuses, Unlabeled, or tab, click in the filter criteria area and add filter criteria to quickly filter the data you want to view.

+

The following filter criteria are available. You can set one or more filter criteria.

+ +
+

Manually Labeling Images

The labeling job details page displays the All statuses, Unlabeled, and Labeled tabs. The Unlabeled tab is displayed by default. Click an image to preview it. For the images that have been labeled, the label information is displayed at the bottom of the preview page.

+
  1. In the Unlabeled tab, select the images to be labeled.
    • Manual selection: In the image list, click the selection box in the upper left corner of an image to enter the selection mode, indicating that the image is selected. You can select multiple images of the same type and add labels to them together.
    • Batch selection: If all the images on the current page of the image list belong to the same type, you can click Select Images on Current Page in the upper right corner to select all the images on the current page.
    +
  2. Add labels to the selected images.
    1. In the label adding area on the right, set a label in the Label text box.

      Click the Label text box and select an existing label from the drop-down list. If the existing labels cannot meet the requirements, input a label in the text box.

      +
    2. Click OK. The selected images are automatically moved to the Labeled tab. In the Unlabeled and All statuses tabs, the labeling information is updated along with the labeling process, including the added label names and the number of images for each label.
    +

    For details about how to label data, see Labeling Description on the dataset details page.

    +
    1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Label Data. The Data Labeling page is displayed.
    2. In the My Creations or My Participations tab, find the dataset to be labeled.
    3. Click the dataset name. The labeling details page is displayed. (By default, the Unlabeled tab is displayed.)
    4. In the upper right corner of the labeling details page, click Labeling Description.
    +
    +
+
+

Viewing Labeled Images

On the labeling job details page, click the Labeled tab to view the list of labeled images. By default, the corresponding labels are displayed under the image thumbnails. You can also select an image and view the label information of the image in the Labels of Selected Images area on the right.

+
+

Modifying Labeled Data

After labeling data, you can modify labeled data in the Labeled tab.
  • Modifying based on images

    On the labeling job details page, click the Labeled tab, and select one or more images to be modified from the image list. Modify the image information in the label information area on the right.

    +

    Modifying a label: In the Labels of Selected Images area, click the edit icon in the Operation column, enter the correct label name in the text box, and click the check mark to complete the modification.

    +

    Deleting a label: In the Labels of Selected Images area, click the delete icon in the Operation column to delete the label. This operation deletes only the labels added to the selected image.

    +
+
  • Modifying based on labels
    • On the labeling job details page, click Label Management. All labels are displayed on the list.
      • Modifying a label: Click Modify in the Operation column. In the displayed dialog box, enter the new label name and click OK. After the modification, the images with the label added will use the new label name.
      • Deleting a label: Click Delete in the Operation column to delete the label from all images that have been added with the label.
      +
    • Locate the target labeling job and click Label in the Operation column to go to the label management page.
      • Click Modify in the Operation column of the target label to modify it.
      • Click Delete in the Operation column of the target label to delete it.
      +
    +
+
+
+

Adding Data

In addition to the data automatically synchronized from datasets, you can directly add images to labeling jobs for labeling. The added data is first imported to the dataset associated with the labeling job. Then, the labeling job automatically synchronizes the latest data from the dataset.

+
  1. On the labeling job details page, click All statuses, Labeled, or Unlabeled tab, click Add data in the upper left corner.
  2. Configure the data source, import mode, import path, and labeling status.
  3. Click OK.

    The images you have added will be automatically displayed in the image list in the All statuses tab. You can choose Add data > View historical records to view task history.

    +
+
+

Deleting Images

You can quickly delete the images you want to discard.

+

In the All statuses, Unlabeled, or Labeled tab, select the images to be deleted or click Select Images on Current Page, and click Delete. In the displayed dialog box, select or deselect Delete the source files from OBS as required. After confirmation, click Yes to delete the images.

+

If a tick is displayed in the upper left corner of an image, the image is selected. If no image is selected on the page, the Delete button is unavailable.

+

If you select Delete the source files from OBS, images stored in the OBS directory will be deleted accordingly. This operation may affect other dataset versions or datasets using those files, for example, leading to an error in page display, training, or inference. Deleted data cannot be recovered. Exercise caution when performing this operation.

+
+
+

Managing Annotators

If team labeling is enabled for a labeling job, view its labeling details in the Annotator Management tab. Additionally, you can add, modify, or delete annotators.

+
  1. Choose Data Management > Label Data. In the My Creations or My Participations tab, view the list of all labeling jobs.
  2. Locate the target team labeling job. (The name of a team labeling job is followed by .)
  3. Choose More > Annotator Management in the Operation column. Alternatively, click the job name to go to the job details page, and choose Team Labeling > Annotator Management in the upper right corner.
+ +
+
+
+ +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0007.html b/docs/modelarts/umn/datalabel-modelarts_0007.html new file mode 100644 index 00000000..941624e4 --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0007.html @@ -0,0 +1,185 @@ + + +

Object detection

+

Training a model uses a large number of labeled images. Therefore, label images before the model training. You can add labels to images by manual labeling or auto labeling. In addition, you can modify the labels of images, or remove their labels and label the images again.

+

Before labeling an image in object detection scenarios, pay attention to the following:

+ +

Starting Labeling

  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Label Data.
  2. In the labeling job list, select a labeling type from the All type drop-down list, click the job to be performed based on the labeling type. The details page of the job is displayed.
  3. The job details page displays all data of the labeling job.
+
+

Synchronizing New Data

ModelArts automatically synchronizes data and labeling information from datasets to the labeling job.

+

To quickly obtain the latest data in a dataset, in the All statuses, Unlabeled, or Labeled tab of the labeling job details page, click Synchronize New Data.

+
+

Filtering Data

In the All statuses, Unlabeled, or tab, click in the filter criteria area and add filter criteria to quickly filter the data you want to view.

+

The following filter criteria are available. You can set one or more filter criteria.

+ +
+

Manually Labeling Images

The labeling job details page displays the All statuses, Unlabeled, and Labeled tabs. The Unlabeled tab is displayed by default.

+
  1. In the Unlabeled tab, click an image. The system automatically directs you to the page for labeling the image. For details about how to use common buttons on this page, see Table 2.
  2. In the tool bar, select a proper labeling shape. The default labeling shape is a rectangle. In this example, the rectangle is used for labeling.

    In the tool bar, multiple tools are provided for you to label images. After you select a shape to label the first image, the shape automatically applies to subsequent images. You can switch the shape as required.

    +
    + +
    + + + + + + + + + + + + + + + + + + + + + + +
    Table 1 Supported bounding box

    Icon

    +

    Description

    +

    +

    Rectangle. You can also press 1. Click the edge of the upper left corner of the object to be labeled. A rectangle will be displayed. Drag the rectangle to cover the object and click to label the object.

    +

    +

    Polygon. You can also press 2. In the area where the object to be labeled is located, click to label a point, move the mouse and click multiple points along the edge of the object, and then click the first point again. All the points form a polygon. In this way, the object to be labeled is within the bounding box.

    +

    +

    Round. You can also press 3. Click the center point of an object, and move the mouse to draw a circle to cover the object and click to label the object.

    +

    +

    Straight. You can also press 4. Click to specify the start and end points of an object, and move the mouse to draw a straight line to cover the object and click to label the object.

    +

    +

    Dashed line. You can also press 5. Click to specify the start and end points of an object, and move the mouse to draw a dashed line to cover the object and click to label the object.

    +

    +

    Dot. You can also press 6. Click the object in an image to label a point.

    +
    +
    +
  3. In the Add Label text box, enter a new label name, select the label color, and click Add. Alternatively, select an existing label from the drop-down list.

    Label all objects in an image. Multiple labels can be added to an image. After labeling an image, click the right arrow (or press D) in the upper right corner of the image to switch to the next image and label the image.

    +
  4. Click Back to Data Labeling Preview in the upper left part of the page to view the labeling information. In the displayed dialog box, click Yes to save the labeling settings.

    The selected images are automatically moved to the Labeled tab. In the Unlabeled and All statuses tabs, the labeling information is updated along with the labeling process, including the added label names and the number of images for each label.

    +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Table 2 Common icons on the labeling page

Icon

+

Features

+

+

Cancel the previous operation. You can also press Ctrl+Z.

+

+

Redo the previous operation. You can also press Ctrl+Shift+Z.

+

+

Zoom in an image. You can also use the mouse wheel to zoom in.

+

+

Zoom out an image. You can also use the mouse wheel to zoom out.

+

+

Delete all bounding boxes on the current image. You can also press Shift+Delete.

+

+

Show or hide a bounding box. This operation can be performed only on a labeled image. You can also press Shift+H.

+

+

Drag a bounding box to another position or drag the edge of the bounding box to resize it. You can also use X + left mouse button.

+

+

Reset a bounding box. After dragging a bounding box, you can click this button to quickly restore the bounding box to its original shape and position. You can also press Esc.

+
+
+
+

Viewing Labeled Images

On the labeling job details page, click the Labeled tab to view the list of labeled images. The labels of each image are displayed below the image.

+
+

Quick Review

Labeling jobs of the current object detection type cannot be reviewed in batches. If the label of a sample is modified or deleted, you need to go to the label details page to operate, which is complex. To simplify the operations, users can now review or modify labeling information in batches, improving efficiency.

+
  1. Log in to the ModelArts management console. In the navigation pane, choose Data Management > Label Data. In the My Creations tab, select the target object detection labeling job from the All types drop-down list in the upper right corner.
  2. In the labeling job list, click the target labeling job. The labeling details page is displayed.
  3. Click Quick Review on the Labeled tab. On the displayed page, confirm the labeling results.
  4. Batch review images of the same label.
    1. On the review page, select the label type from the drop-down list next to Filter by Label.
    2. Sort images of the selected label type by bounding box area or aspect ratio.
    3. Click an incorrectly labeled image, and then drag the labeling box to relabel the image. (Modified is displayed on the modified images.)
    4. You can select the incorrectly labeled images, and then click in the upper right corner to delete the label. (Deleted is displayed on the images whose label has been deleted.)
    5. You can also modify the label of a labeled image.
      1. Select the target images and click in the All Labels area on the right.
      2. Type a new label and click OK.
      +
    +
  5. After the modification, click Apply Modifications. In the displayed dialog box, click OK. The system automatically returns to the labeling overview page and overwrites the original labeling data.
  6. If you are not satisfied with the modified data, you can click Cancel Modifications to retain the original labeling data. +
    + + + + + + + + + + + + + + + + +
    Table 3 Buttons on the quick review page

    Button

    +

    Features

    +

    +

    Delete the label.

    +

    +

    Undo all operations on the current page.

    +

    +

    Undo the previous operation.

    +

    +

    Redo the previous operation.

    +
    +
    +
+
+

Modifying Labeled Data

After labeling data, you can modify labeled data in the Labeled tab.

+ + +
+

Adding Data

In addition to the data automatically synchronized from datasets, you can directly add images to labeling jobs for labeling. The added data is first imported to the dataset associated with the labeling job. Then, the labeling job automatically synchronizes the latest data from the dataset.

+
  1. On the labeling job details page, click All statuses, Labeled, or Unlabeled tab, click Add data in the upper left corner.
  2. Configure the data source, import mode, import path, and labeling status.
  3. Click OK.

    The images you have added will be automatically displayed in the image list in the All statuses tab. You can choose Add data > View historical records to view task history.

    +
+
+

Deleting Images

You can quickly delete the images you want to discard.

+

In the All statuses, Unlabeled, or Labeled tab, select the images to be deleted or click Select Images on Current Page, and click Delete. In the displayed dialog box, select or deselect Delete the source files from OBS as required. After confirmation, click Yes to delete the images.

+

If a tick is displayed in the upper left corner of an image, the image is selected. If no image is selected on the page, the Delete button is unavailable.

+

If you select Delete the source files from OBS, images stored in the OBS directory will be deleted accordingly. This operation may affect other dataset versions or datasets using those files, for example, leading to an error in page display, training, or inference. Deleted data cannot be recovered. Exercise caution when performing this operation.

+
+
+

Managing Annotators

If team labeling is enabled for a labeling job, view its labeling details in the Annotator Management tab. Additionally, you can add, modify, or delete annotators.

+
  1. Choose Data Management > Label Data. In the My Creations or My Participations tab, view the list of all labeling jobs.
  2. Locate the row that contains the target team labeling job. (The name of a team labeling job is followed by .)
  3. Choose More > Annotator Management in the Operation column. Alternatively, click the job name to go to the job details page, and choose Team Labeling > Annotator Management in the upper right corner.

    +
+ +
+
+
+ +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0008.html b/docs/modelarts/umn/datalabel-modelarts_0008.html new file mode 100644 index 00000000..3b61e4f7 --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0008.html @@ -0,0 +1,120 @@ + + +

Image Segmentation

+

Training a model uses a large number of labeled images. Therefore, label images before the model training. You can label images on the ModelArts management console. Alternatively, modify labels, or delete them and label them again.

+

Before labeling an image in image segmentation scenarios, pay attention to the following:

+ +

Starting Labeling

  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Label Data.
  2. On the right of the labeling job list, select a labeling type from the job type drop-down list. Click the job to be performed based on the labeling type. The details page of the job is displayed.
  3. The job details page displays all data of the labeling job.
+
+

Synchronizing New Data

ModelArts automatically synchronizes data and labeling information from datasets to the labeling job.

+

To quickly obtain the latest data in a dataset, in the All statuses, Unlabeled, or Labeled tab of the labeling job details page, click Synchronize New Data.

+
+

Filtering Data

In the All statuses, Unlabeled, or tab, click in the filter criteria area and add filter criteria to quickly filter the data you want to view.

+

The following filter criteria are available. You can set one or more filter criteria.

+ +
+

Manually Labeling Images

The labeling job details page displays the All statuses, Unlabeled, and Labeled tabs. The Unlabeled tab is displayed by default.

+
  1. In the Unlabeled tab, click an image. The system automatically directs you to the page for labeling the image. For details about how to use common buttons on this page, see Table 2.
  2. Select a labeling method.
    On the labeling page, common labeling methods and buttons are provided in the toolbar. By default, polygon labeling is selected.

    After you select a method to label the first image, the labeling method automatically applies to subsequent images.

    +
    +
    +
    Figure 1 Toolbar
    +
    +
    + + + + + + + +
    Table 1 Labeling methods

    Icon

    +

    Description

    +

    +

    Polygon. In the area where the object to be labeled is located, click to label a point, move the mouse and click multiple points along the edge of the object, and then click the first point again. All the points form a polygon. In this way, the object to be labeled is within the bounding box.

    +
    +
    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Table 2 Toolbar buttons

    Button

    +

    Features

    +

    +

    Cancel the previous operation.

    +

    +

    Redo the previous operation.

    +

    +

    Zoom in an image.

    +

    +

    Zoom out an image.

    +

    +

    Delete all bounding boxes on the current image.

    +

    +

    Show or hide a bounding box. This operation can be performed only on a labeled image.

    +

    +

    Drag a bounding box to another position or drag the edge of the bounding box to resize it.

    +

    +

    Reset a bounding box. After dragging a bounding box, you can click this button to quickly restore the bounding box to its original shape and position.

    +

    +

    Display the labeled image in full screen.

    +
    +
    +
    +
  3. Label an object.

    After labeling an image, click an image that has not been labeled in the image list below to label the new image.

    +
  4. Click Back to Data Labeling Preview in the upper left part of the page to view the labeling information. In the displayed dialog box, click Yes to save the labeling settings.

    The selected images are automatically moved to the Labeled tab. In the Unlabeled and All statuses tabs, the labeling information is updated along with the labeling process, including the added label names and the number of images for each label.

    +
+
+

Viewing Labeled Images

On the labeling job details page, click the Labeled tab to view the list of labeled images. Click an image to view its labeling information in the File Labels area on the right.

+
+

Modifying a Label

After labeling data, you can modify labeled data in the Labeled tab.

+

On the labeling details page, click the Labeled tab and then the image to be modified. On the displayed labeling page, modify the labeling information in the File Labels area on the right.

+ +

After the labeling information is modified, click Back to Data Labeling Preview in the upper left part of the page to exit the labeling page. In the displayed dialog box, click Yes to save the modification.

+
+

Adding Data

In addition to the data automatically synchronized from datasets, you can directly add images to labeling jobs for labeling. The added data is first imported to the dataset associated with the labeling job. Then, the labeling job automatically synchronizes the latest data from the dataset.

+
  1. On the labeling job details page, click All statuses, Labeled, or Unlabeled tab, click Add data in the upper left corner.
  2. Configure the data source, import mode, import path, and labeling status.
  3. Click OK.

    The images you have added will be automatically displayed in the image list in the All statuses tab. You can choose Add data > View historical records to view task history.

    +
+
+

Deleting Images

You can quickly delete the images you want to discard.

+

In the All statuses, Unlabeled, or Labeled tab, select the images to be deleted or click Select Images on Current Page, and click Delete in the upper left corner to delete them. In the displayed dialog box, select or deselect Delete the source files from OBS as required. After confirmation, click Yes to delete the images.

+

If a tick is displayed in the upper left corner of an image, the image is selected. If no image is selected on the page, the Delete button is unavailable.

+

If you select Delete the source files from OBS, images stored in the OBS directory will be deleted accordingly. This operation may affect other dataset versions or datasets using those files, for example, leading to an error in page display, training, or inference. Deleted data cannot be recovered. Exercise caution when performing this operation.

+
+
+
+
+ +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0009.html b/docs/modelarts/umn/datalabel-modelarts_0009.html new file mode 100644 index 00000000..41be91a8 --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0009.html @@ -0,0 +1,19 @@ + + +

Text Labeling

+
+
+ + + +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0010.html b/docs/modelarts/umn/datalabel-modelarts_0010.html new file mode 100644 index 00000000..89c433ab --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0010.html @@ -0,0 +1,50 @@ + + +

Text classification

+

Model training requires a large amount of labeled data. Therefore, before the model training, add labels to the files that are not labeled. In addition, you can modify, delete, and re-label the labeled text.

+

Text classification classifies text content based on labels. Before labeling text content, pay attention to the following:

+ +

Starting Labeling

  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Label Data.
  2. In the labeling job list, select a labeling type from the All type drop-down list, click the job to be performed based on the labeling type. The details page of the job is displayed.
  3. The job details page displays all data of the labeling job.
+
+

Synchronizing New Data

ModelArts automatically synchronizes data and labeling information from datasets to the labeling job.

+

To quickly obtain the latest data in the datasets, in the Unlabeled tab of the labeling job details page, click Synchronize New Data.

+
+

Labeling Text Files

The labeling job details page displays the Unlabeled and Labeled tabs. The Unlabeled tab is displayed by default.

+
  1. In the Unlabeled tab, the objects to be labeled are listed in the left pane. In the list, click the text object to be labeled, and select a label in the Label Set area in the right pane. Multiple labels can be added to a labeling object.

    You can repeat this operation to select objects and add labels to the objects.

    +
  2. After all objects are labeled, click Save Current Page at the bottom of the page.
+
+

Adding a Label

+
+

Viewing the Labeled Text

On the labeling job details page, click the Labeled tab to view the list of labeled texts. You can also view all labels supported by the labeling job in the All Labels area on the right.

+
+

Modifying Labeled Data

After labeling data, you can modify labeled data in the Labeled tab.

+ + +
+

Adding a File

In addition to the data synchronized, you can directly add data on labeling job details page for labeling.

+
  1. On the labeling job details page, click the Unlabeled tab, click Add data in the upper left corner.
  2. Configure the data source, import mode, and other parameters, and click OK.

    For details about how to import data, see section "Importing Data".

    +
+
+

Deleting a File

You can quickly delete the files you want to discard.

+ +

The background of the selected text is blue.

+
+

Managing Annotators

If team labeling is enabled for a labeling job, view its labeling details in the Annotator Management tab. Additionally, you can add, modify, or delete annotators.

+
  1. Choose Data Management > Label Data. In the My Creations or My Participations tab, view the list of all labeling jobs.
  2. Locate the row that contains the target team labeling job. (The name of a team labeling job is followed by .)
  3. Choose More > Annotator Management in the Operation column. Alternatively, click the job name to go to the job details page, and choose Team Labeling > Annotator Management in the upper right corner.
+ +
+
+
+ +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0011.html b/docs/modelarts/umn/datalabel-modelarts_0011.html new file mode 100644 index 00000000..60ea6f02 --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0011.html @@ -0,0 +1,50 @@ + + +

Named Entity Recognition

+

Named entity recognition assigns labels to named entities in text, such as time and locations. Before labeling, pay attention to the following:

+

A label name of a named entity can contain a maximum of 1,024 characters, including letters, digits, hyphens (-), underscores (_), and special characters.

+

Starting Labeling

  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Label Data.
  2. In the labeling job list, select a labeling type from the All type drop-down list, click the job to be performed based on the labeling type. The details page of the job is displayed.
  3. The job details page displays all data of the labeling job.
+
+

Synchronizing New Data

ModelArts automatically synchronizes data and labeling information from datasets to the labeling job.

+

To quickly obtain the latest data in the datasets, in the Unlabeled tab of the labeling job details page, click Synchronize New Data.

+
+

Labeling Text Files

The labeling job details page displays the Unlabeled and Labeled tabs. The Unlabeled tab is displayed by default.

+
  1. In the Unlabeled tab, the objects to be labeled are listed in the left pane. In the list, click the text object to be labeled, select a part of text displayed under Label Set for labeling, and select a label in the Label Set area in the right pane. Multiple labels can be added to a labeling object.

    You can repeat this operation to select objects and add labels to the objects.

    +
  2. Click Save Current Page in the lower part of the page to complete the labeling.
+
+

Adding a Label

+
+

Viewing the Labeled Text

On the dataset details page, click the Labeled tab to view the list of the labeled text. You can also view all labels supported by the dataset in the All Labels area on the right.

+
+

Modifying Labeled Data

After labeling data, you can modify labeled data in the Labeled tab.

+

On the labeling job details page, click the Labeled tab, and modify the text information in the label information area on the right.

+ + +
+

Adding a File

In addition to the data synchronized, you can directly add data on labeling job details page for labeling.

+
  1. On the labeling job details page, click the Unlabeled tab, click Add data in the upper left corner.
  2. Configure the data source, import mode, and other parameters, and click OK.

    For details about how to import data, see section "Importing Data".

    +
+
+

Deleting a File

You can quickly delete the files you want to discard.

+ +

The background of the selected text is blue.

+
+

Managing Annotators

If team labeling is enabled for a labeling job, view its labeling details in the Annotator Management tab. Additionally, you can add, modify, or delete annotators.

+
  1. Choose Data Management > Label Data. In the My Creations or My Participations tab, view the list of all labeling jobs.
  2. Locate the row that contains the target team labeling job. (The name of a team labeling job is followed by .)
  3. Choose More > Annotator Management in the Operation column. Alternatively, click the job name to go to the job details page, and choose Team Labeling > Annotator Management in the upper right corner.
+ +
+
+
+ +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0012.html b/docs/modelarts/umn/datalabel-modelarts_0012.html new file mode 100644 index 00000000..d36b9a43 --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0012.html @@ -0,0 +1,45 @@ + + +

Text Triplet

+

Triplet labeling is suitable for scenarios where structured information, such as subjects, predicates, and objects, needs to be labeled in statements. With this function, not only entities in statements, but also relationships between entities can be labeled. Triplet labeling is often used in natural language processing tasks such as dependency syntax analysis and information extraction.

+

Text triplet labeling involves two classes of important labels: Entity Label and Relationship Label. For Relationship Label, set its Source entity and Target entity.

+ +

Precautions

Before labeling, ensure that the Entity Label and Relationship Label of a labeling job have been defined. For Relationship Label, set its Source entity and Target entity. Relationship Label must be between the defined Source entity and Target entity.

+

For example, if two entities are labeled as Place, you cannot add any relationship label between them. If a relationship label cannot be added, a red cross is displayed.

+
+

Starting Labeling

  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Label Data.
  2. In the labeling job list, select a labeling type from the All type drop-down list, click the job to be performed based on the labeling type. The details page of the job is displayed.
  3. The job details page displays all data of the labeling job.
+
+

Synchronizing New Data

ModelArts automatically synchronizes data and labeling information from datasets to the labeling job.

+

To quickly obtain the latest data in the datasets, in the Unlabeled tab of the labeling job details page, click Synchronize New Data.

+
+

Labeling Text Files

The labeling job details page displays the Unlabeled and Labeled tabs. The Unlabeled tab is displayed by default.

+
  1. In the Unlabeled tab, the objects to be labeled are listed in the left pane. In the list, click a text object, select the corresponding text content on the right pane, and select an entity name from the displayed entity list to label the content.
  2. After labeling multiple entities, click the source entity and target entity in sequence and select a relationship type from the displayed relationship list to label the relationship.
  3. After all objects are labeled, click Save Current Page at the bottom of the page.
+

You cannot modify the labels of a dataset in the text triplet type on the labeling page. Instead, click Label Management and modify the Entity Label and Relationship Label.

+
+
+

Modifying Labeled Data

After labeling data, you can modify labeled data in the Labeled tab.

+

On the labeling job details page, click the Labeled tab. Select a text object in the left pane and the right pane displays the detailed label information. You can move your cursor to the entity or relationship label, and right-click to delete it. You can also click the source entity and target entity in sequence to add a relationship label.

+
+

Adding a File

In addition to the data synchronized, you can directly add data on labeling job details page for labeling.

+
  1. On the labeling job details page, click the Unlabeled tab, click Add data in the upper left corner.
  2. Configure input data and click OK.

    For details about how to import data, see section "Importing Data".

    +
+
+

Deleting a File

You can quickly delete the files you want to discard.

+ +

The background of the selected text is blue. If no text is selected on the page, the Delete button is unavailable.

+
+

Managing Annotators

If team labeling is enabled for a labeling job, view its labeling details in the Annotator Management tab. Additionally, you can add, modify, or delete annotators.

+
  1. Choose Data Management > Label Data. In the My Creations or My Participations tab, view the list of all labeling jobs.
  2. Locate the row that contains the target team labeling job. (The name of a team labeling job is followed by .)
  3. Choose More > Annotator Management in the Operation column. Alternatively, click the job name to go to the job details page, and choose Team Labeling > Annotator Management in the upper right corner.
+ +
+
+
+ +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0013.html b/docs/modelarts/umn/datalabel-modelarts_0013.html new file mode 100644 index 00000000..6b5af2f4 --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0013.html @@ -0,0 +1,19 @@ + + +

Audio Labeling

+
+
+ + + +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0014.html b/docs/modelarts/umn/datalabel-modelarts_0014.html new file mode 100644 index 00000000..e6e9363f --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0014.html @@ -0,0 +1,46 @@ + + +

Sound classification

+

Model training requires a large amount of labeled data. Therefore, before the model training, label the unlabeled audio files. ModelArts enables you to label audio files in batches by one click. In addition, you can modify the labels of audio files, or remove their labels and label the audio files again.

+

Starting Labeling

  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Label Data.
  2. In the labeling job list, select a labeling type from the All type drop-down list, click the job to be performed based on the labeling type. The details page of the job is displayed.
  3. The job details page displays all data of the labeling job.
+
+

Synchronizing New Data

ModelArts automatically synchronizes data and labeling information from datasets to the labeling job.

+

To quickly obtain the latest data in the datasets, in the Unlabeled or Labeled tab of the labeling job details page, click Synchronize New Data.

+
+

Labeling Audio Files

The labeling job details page displays the Unlabeled and Labeled tabs. The Unlabeled tab is displayed by default. Click on the left of the audio to preview the audio.

+
  1. In the Unlabeled tab, select the audio files to be labeled.
    • Manual selection: In the audio list, click the target audio. If the blue check box is displayed in the upper right corner, the audio is selected. You can select multiple audio files of the same type and label them together.
    • Batch selection: If all audio files of the current page belong to one type, you can click Select Current Page in the upper right corner of the list to select all the audio files on the page.
    +
  2. Add labels.
    1. In the label adding area on the right, set a label in the Label text box.

      Method 1 (the required label already exists): In the right pane, select a shortcut from the Shortcut drop-down list, select an existing label name from the Label text box, and click OK.

      +

      Method 2 (adding a label): In the right pane, select a shortcut from the Shortcut drop-down list, and enter a new label name in the Label text box.

      +
    2. The selected audio files are automatically moved to the Labeled tab. In the Unlabeled tab, the labeling information is updated along with the labeling process, including the added label names and the number of audio files corresponding to each label.
    +

    Shortcut key description: After specifying a shortcut key for a label, you can select an audio file and press the shortcut key to add a label for the audio file. Example: Specify 1 as the shortcut key for the aa label. Select one or more files and press 1. A message is displayed, asking you whether to label the files with aa. Click OK.

    +

    Each label has a shortcut key. A shortcut key cannot be specified for different labels. Shortcut keys can greatly improve the labeling efficiency.

    +
    +
+
+

Viewing the Labeled Audio Files

On the labeling job details page, click the Labeled tab to view the list of labeled audio files. Click an audio file. You can view the label information about the audio file in the File Labels area on the right.

+
+

Modifying Labeled Data

After labeling data, you can modify labeled data in the Labeled tab.

+ + +
+

Adding an Audio File

In addition to the data synchronized, you can directly add data on labeling job details page for labeling.

+
  1. On the labeling job details page, click the Unlabeled or Labeled tab, click Add data in the upper left corner.
  2. Configure the data source, import mode, and other parameters, and click OK.

    For details about how to import data, see section "Importing Data".

    +
+
+

Deleting Audio Files

You can quickly delete the audio files you want to discard.

+

In the Unlabeled or Labeled tab, select the audio files to be deleted one by one or tick Select Current Page to select all audio files on the page, and then click Delete File in the upper left corner. In the displayed dialog box, select or deselect Delete the source files from OBS as required. After confirmation, click OK to delete the audio files.

+

If a tick is displayed in the upper right corner of an audio file, the audio file is selected. If no audio file is selected on the page, the Delete File button is unavailable.

+

If you select Delete the source files from OBS, audio files stored in the corresponding OBS directory will be deleted when you delete the selected audio files. Deleting source files may affect other dataset versions or datasets using those files. As a result, the page display, training, or inference is abnormal. Deleted data cannot be recovered. Exercise caution when performing this operation.

+
+
+
+
+ +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0015.html b/docs/modelarts/umn/datalabel-modelarts_0015.html new file mode 100644 index 00000000..1b1fc08d --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0015.html @@ -0,0 +1,33 @@ + + +

Speech Labeling

+

Model training requires a large amount of labeled data. Therefore, before the model training, label the unlabeled audio files. ModelArts enables you to label audio files in batches by one click. In addition, you can modify the labels of audio files, or remove their labels and label the audio files again.

+

Starting Labeling

  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Label Data.
  2. In the labeling job list, select a labeling type from the All type drop-down list, click the job to be performed based on the labeling type. The details page of the job is displayed.
  3. The job details page displays all data of the labeling job.
+
+

Synchronizing New Data

ModelArts automatically synchronizes data and labeling information from datasets to the labeling job.

+

To quickly obtain the latest data in the datasets, in the Unlabeled tab of the labeling job details page, click Synchronize New Data.

+
+

Labeling Audio Files

The labeling job details page displays the labeled and unlabeled audio files. The Unlabeled tab is displayed by default.

+
  1. In the audio file list in the Unlabeled tab, click the target audio file. In the area on the right, the audio file is displayed. Click below the audio file to play the audio.
  2. In Speech Content, enter the speech content.
  3. After entering the content, click Label to complete the labeling. The audio file is automatically moved to the Labeled tab.
+
+

Viewing the Labeled Audio Files

On the labeling job details page, click the Labeled tab to view the list of labeled audio files. Click the audio file to view the audio content in the Speech Content text box on the right.

+
+

Modifying Labeled Data

After labeling data, you can modify labeled data in the Labeled tab.

+

On the labeling job details page, click the Labeled tab and select the audio file to be modified from the audio file list. In the label information area on the right, modify the content of the Speech Content text box, and click Label to complete the modification.

+
+

Adding an Audio File

In addition to the data synchronized, you can directly add data on labeling job details page for labeling.

+
  1. On the labeling job details page, click the Unlabeled tab, click Add data in the upper left corner.
  2. Configure input data and click OK.

    For details about how to import data, see section "Importing Data".

    +
+
+

Deleting Audio Files

You can quickly delete the audio files you want to discard.

+

In the Unlabeled or Labeled tab, select the audio files to be deleted, and then click Delete File in the upper left corner. In the displayed dialog box, select or deselect Delete the source files from OBS as required. After confirmation, click OK to delete the audio files.

+

If you select Delete the source files from OBS, audio files stored in the corresponding OBS directory will be deleted when you delete the selected audio files. Deleting source files may affect other dataset versions or datasets using those files. As a result, the page display, training, or inference is abnormal. Deleted data cannot be recovered. Exercise caution when performing this operation.

+
+
+
+
+ +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0016.html b/docs/modelarts/umn/datalabel-modelarts_0016.html new file mode 100644 index 00000000..5be0fccc --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0016.html @@ -0,0 +1,41 @@ + + +

Speech Paragraph Labeling

+

Model training requires a large amount of labeled data. Therefore, before the model training, label the unlabeled audio files. ModelArts enables you to label audio files. In addition, you can modify the labels of audio files, or remove their labels and label the audio files again.

+

Starting Labeling

  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Label Data.
  2. In the labeling job list, select a labeling type from the All type drop-down list, click the job to be performed based on the labeling type. The details page of the job is displayed.
  3. The job details page displays all data of the labeling job.
+
+

Synchronizing Data Sources

ModelArts automatically synchronizes data and labeling information from datasets to the labeling job.

+

To quickly obtain the latest data in the OBS bucket, click Synchronize Data Source in the Unlabeled tab of the labeling job details page to add the data uploaded using OBS to the dataset.

+
+

Labeling Audio Files

The labeling job details page displays the Unlabeled and Labeled tabs. The Unlabeled tab is displayed by default.

+
  1. In the audio file list in the Unlabeled tab, click the target audio file. In the area on the right, the audio file is displayed. Click below the audio file to play the audio.
  2. Select an audio segment based on the content being played, and enter the audio file label and content in the Speech Content text box.
  3. After entering the content, click Label to complete the labeling. The audio file is automatically moved to the Labeled tab.
+
+

Viewing the Labeled Audio Files

On the labeling job details page, click the Labeled tab to view the list of labeled audio files. Click the audio file to view the labeling information on the right.

+
+

Modifying Labeled Data

After labeling data, you can modify labeled data in the Labeled tab.

+ +
+

Adding an Audio File

In addition to the data synchronized, you can directly add data on labeling job details page for labeling.

+
  1. On the labeling job details page, click the Unlabeled tab, click Add data in the upper left corner.
  2. Configure input data and click OK.

    +
+
+

Deleting Audio Files

You can quickly delete the audio files you want to discard.

+

In the Unlabeled or Labeled tab, select the audio files to be deleted, and then click Delete File in the upper left corner. In the displayed dialog box, select or deselect Delete the source files from OBS as required. After confirmation, click OK to delete the audio files.

+

If you select Delete the source files from OBS, audio files stored in the corresponding OBS directory will be deleted when you delete the selected audio files. Deleting source files may affect other dataset versions or datasets using those files. As a result, the page display, training, or inference is abnormal. Deleted data cannot be recovered. Exercise caution when performing this operation.

+
+
+

Managing Annotators

If team labeling is enabled for a labeling job, view its labeling details in the Annotator Management tab. Additionally, you can add, modify, or delete annotators.

+
  1. Choose Data Management > Label Data. In the My Creations or My Participations tab, view the list of all labeling jobs.
  2. Locate the row that contains the target team labeling job. (The name of a team labeling job is followed by .)
  3. Choose More > Annotator Management in the Operation column. Alternatively, click the job name to go to the job details page, and choose Team Labeling > Annotator Management in the upper right corner.
+ +
+
+
+ +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0017.html b/docs/modelarts/umn/datalabel-modelarts_0017.html new file mode 100644 index 00000000..e6237dce --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0017.html @@ -0,0 +1,38 @@ + + +

Video Labeling

+

Model training requires a large amount of labeled video data. Therefore, before the model training, label the unlabeled video files. ModelArts enables you to label video files. In addition, you can modify the labels of video files, or remove their labels and label the video files again.

+

Video labeling applies only to video frames.

+
+

Starting Labeling

  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Label Data.
  2. In the labeling job list, select a labeling type from the All type drop-down list, click the job to be performed based on the labeling type. The details page of the job is displayed.
  3. The job details page displays all data of the labeling job.
+
+

Synchronizing Data Sources

ModelArts automatically synchronizes data and labeling information from Input Dataset Path to the dataset details page.

+

To quickly obtain the latest data in the OBS bucket, in the Labeled or Unlabeled tab of the labeling job details page, click Synchronize Data Source.

+
+

Video Labeling

The labeling job details page displays the Unlabeled, Labeled, and All statuses tabs.

+
  1. In the Unlabeled tab, click the target video file in the video list on the left. The labeling page is displayed.
  2. Play the video. When the video is played to the time point to be labeled, click the pause button in the progress bar to pause the video to a specific image.
  3. In the upper pane, select a bounding box. By default, a rectangular box is selected. Drag the mouse to select an object in the video image, enter a new label name in the displayed Add Label text box, select a label color, and click Add to label the object. Alternatively, select an existing label from the drop-down list and click Add to label the object. Label all objects in the image. Multiple labels can be added to an image.

    The supported labeling boxes are the same as those for object detection. For details, see Table 2.

    +
  4. After the previous image is labeled, click the play button on the progress bar to resume the playback. Then, repeat 3 to complete labeling on the entire video.

    Click Label List in the upper right corner of the page. The time points when the video is labeled are displayed.

    +
    Figure 1 File labels
    +
  5. Click Back to Data Labeling Preview in the upper left corner of the page. The labeling job details page is displayed, and the labeled video file is displayed in the Labeled tab.
+
+

Modifying Labeled Data

After labeling data, you can modify labeled data in the Labeled tab.

+ + +
+

Adding Video Files

In addition to the data synchronized, you can directly add data on labeling job details page for labeling.

+
  1. On the labeling job details page, click the Unlabeled or Labeled tab, click Add data in the upper left corner.
  2. Configure the data source, import mode, and other parameters, and click OK.

    +
+
+

Deleting a Video File

You can quickly delete the video files you want to discard.

+

In the All statuses, Unlabeled, or Labeled tab, select the video files to be deleted or click Select Images on Current Page to select all video files on the page, and click Delete in the upper part to delete the video files. In the displayed dialog box, select or deselect Delete the source files from OBS as required. After confirmation, click OK to delete the videos.

+

If a tick is displayed in the upper left corner of a video file, the video file is selected. If no video file is selected on the page, the Delete button is unavailable.

+

If you select Delete the source files from OBS, video files stored in the corresponding OBS directory will be deleted when you delete the selected video files. Deleting source files may affect other dataset versions or datasets using those files. As a result, the page display, training, or inference is abnormal. Deleted data cannot be recovered. Exercise caution when performing this operation.

+
+
+
+
+ +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0018.html b/docs/modelarts/umn/datalabel-modelarts_0018.html new file mode 100644 index 00000000..9c78fdc6 --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0018.html @@ -0,0 +1,17 @@ + + +

Auto Labeling

+
+
+ + + +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0019.html b/docs/modelarts/umn/datalabel-modelarts_0019.html new file mode 100644 index 00000000..b68b9720 --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0019.html @@ -0,0 +1,73 @@ + + +

Creating an Auto Labeling Job

+

In addition to manual labeling, ModelArts also provides the auto labeling function to quickly label data, reducing the labeling time by more than 70%. Auto labeling means learning and training are performed based on the labeled images and an existing model is used to quickly label the remaining images.

+

Context

+
+

Starting an Auto Labeling Job

  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Label Data. The Data Labeling page is displayed.
  2. In the labeling job list, locate the target labeling job of the object detection or image classification type, and click Auto Labeling in the Operation column.
  3. On the Enable Auto Labeling page, select Active learning or Pre-labeling. For details, see Table 1 and Table 2. +
    + + + + + + + + + + + + + + + + +
    Table 1 Active learning

    Parameter

    +

    Description

    +

    Auto Labeling Type

    +

    Active learning: The system uses semi-supervised learning and hard example filtering to perform auto labeling, reducing manual labeling workload and helping you find hard examples.

    +

    Algorithm Type

    +

    For a dataset of the image classification type, set the following parameters:

    +

    Fast: Use the labeled samples for training.

    +

    Specifications

    +

    Resource specifications used by an auto labeling job. Only GPU specifications are supported, and the OBT is free of charge.

    +

    Compute Nodes

    +

    The default value is 1, indicating the single-node system mode. Only this parameter value is supported.

    +
    +
    + +
    + + + + + + + + + + +
    Table 2 Pre-labeling

    Parameter

    +

    Description

    +

    Auto Labeling Type

    +

    Pre-labeling: Select a model in the My AI Applications tab. Ensure that the model type matches the dataset labeling type. After the pre-labeling is complete, if the labeling result complies with the standard labeling format defined by the platform, the system filters hard examples. This step does not affect the pre-labeling result.

    +

    Model and Version

    +
    • My AI Applications: Select a model as required. Click the drop-down arrow on the left of the target AI application and select a proper version. For details about how to import a model, see Creating an AI Application
    +
    +
    +
    • For labeling jobs of the object detection type, only rectangular boxes can be recognized and labeled when Active learning is selected.
    • If there are too many auto labeling jobs in the system, the jobs may be queued. As a result, the jobs are always in the labeling state. The jobs will run one after another in order.
    +
    +

    +
  4. After setting the parameters, click Submit to enable auto labeling.
  5. In the labeling job list, click a labeling job name to go to the labeling job details page.
  6. Click the To Be Confirmed tab to view the auto labeling progress.

    You can also enable auto labeling or view the auto labeling history in this tab.

    +
  7. After auto labeling is complete, all the labeled images are displayed on the To Be Confirmed page.
    • Image classification labeling job

      On the To Be Confirmed page, check whether labels are correct, select the correctly labeled images, and click OK to confirm the auto labeling results. The confirmed image will be categorized to the Labeled page.

      +
    • Object detection labeling job

      On the To Be Confirmed page, click images to view their labeling details and check whether labels and target bounding boxes are correct. For the correctly labeled images, click Labeled to confirm the auto labeling results. The confirmed image will be categorized to the Labeled page.

      +
    +
+
+
+
+ +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0020.html b/docs/modelarts/umn/datalabel-modelarts_0020.html new file mode 100644 index 00000000..d7f8cacd --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0020.html @@ -0,0 +1,30 @@ + + +

Confirming Hard Examples

+

In a labeling task that processes a large amount of data, auto labeling results cannot be directly used for training because the labeled images are insufficient at the initial stage of labeling. It takes a lot of time and manpower to adjust and confirm all unlabeled data one by one. To accelerate labeling progress, ModelArts embeds an auto hard example detection function for labeling unlabeled data in an auto labeling task. This function provides suggestions on labeling priorities for remaining unlabeled images. The auto labeling result of an image with high labeling priority is not as expected. Therefore, this case is called a hard example.

+

The auto hard example detection function is used to automatically label hard examples during auto labeling and data collection and filtering. Further confirm and label hard example data, and add labeling results to the training dataset to obtain a trained model with higher precision. No manual intervention is required for hard example detection, and you only need to confirm and modify the labeled data, improving data management and labeling efficiency. In addition, you can supplement data similar to hard examples to improve the variety of the dataset and further improve the model training precision.

+

Hard example management involves three scenarios.

+ +

Only datasets of image classification and object detection types support the auto hard example detection function.

+
+

Confirming Hard Examples After Auto Labeling

During the execution of an auto labeling task, ModelArts automatically detects and labels hard examples. After the auto labeling task is complete, the labeling results of hard examples are displayed in the To Be Confirmed tab. Modify hard example data and confirm the labeling result.

+
  1. Log in to the ModelArts management console. In the navigation pane, choose Data Management > Label Data. On the Data Labeling page, click My Creations.
  2. In the labeling job list, select a labeling job of the object detection or image classification type and click the labeling job name to go to the labeling job details page.
  3. In the Labeling tab, click To Be Confirmed to check and confirm hard examples.

    Labeling data is displayed in the To Be Confirmed tab only after the auto labeling task is complete. Otherwise, no data is available in the tab. For details about auto labeling, see Creating an Auto Labeling Job.

    +
    +
    • For labeling jobs of the object detection type

      In the To Be Confirmed tab, click an image to expand its labeling details. Check whether labeling information is correct, for example, whether the label is correct and whether the target bounding box is correctly added to the right position. If the auto labeling result is inaccurate, manually adjust the label or target bounding box and click Labeled. Then, the re-labeled data is displayed in the Labeled tab.

      +

      If the target frame is in the incorrect position, the data need to be labeled again. Delete the original target frame. After manual adjustment, click Labeled to confirm the hard example.

      +
    • For labeling jobs of the image classification type

      In the To Be Confirmed tab, check whether labels added to images with the Hard example mark are correct. Select the images that are incorrectly labeled, delete the incorrect labels, and add correct labels in Label on the right. Click OK. The selected images and its labeling details are displayed in the Labeled tab.

      +

      The selected images are incorrectly labeled. Delete the incorrect labels on the right, add a label in Label, and click OK to confirm the hard examples.

      +
    +
    +
+
+

Labeling Data in a Dataset as Hard Examples

In a labeling job, labeled or unlabeled image data can be labeled as hard examples. Data labeled as hard examples can be used to improve model precision through built-in rules during subsequent model training.

+
  1. Log in to the ModelArts management console. In the navigation pane, choose Data Management > Label Data. On the Data Labeling page, click My Creations.
  2. In the labeling job list, select a labeling job of the object detection or image classification type and click the labeling job name to go to the labeling job details page.
  3. On the labeling job details page, click the Labeled, Unlabeled, or All tab, select the images to be labeled as hard examples, and choose Batch Process Hard Examples > Confirm Hard Example. After the labeling is complete, a Hard example mark will be displayed in the upper right corner of a preview image.
+
+
+
+ +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0022.html b/docs/modelarts/umn/datalabel-modelarts_0022.html new file mode 100644 index 00000000..29db816e --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0022.html @@ -0,0 +1,27 @@ + + +

Team Labeling

+
+
+ + + +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0023.html b/docs/modelarts/umn/datalabel-modelarts_0023.html new file mode 100644 index 00000000..a444d283 --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0023.html @@ -0,0 +1,16 @@ + + +

Team Labeling Overview

+

Generally, a small data labeling job can be completed by an individual. However, team work is required to label a large dataset. ModelArts provides team labeling, allowing a labeling team that consists of multiple members to manage labels of a dataset.

+

Team labeling is available only to datasets for image classification, object detection, text classification, named entity recognition, text triplet, and speech paragraph labeling.

+
+

For labeling jobs with team labeling enabled, you can create team labeling jobs and assign them to different teams so that team members can complete the labeling jobs together. During data labeling, members can initiate acceptance, continue acceptance, and view acceptance reports.

+

Team labeling is managed in a unit of teams. To enable team labeling for a dataset, a team must be specified. Multiple members can be added to a team.

+ +
+
+ +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0024.html b/docs/modelarts/umn/datalabel-modelarts_0024.html new file mode 100644 index 00000000..d6438833 --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0024.html @@ -0,0 +1,18 @@ + + +

Creating and Managing Teams

+

+
+
+ + + +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0025.html b/docs/modelarts/umn/datalabel-modelarts_0025.html new file mode 100644 index 00000000..b734a7e4 --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0025.html @@ -0,0 +1,19 @@ + + +

Managing Teams

+

Team labeling is managed in a unit of teams. To enable team labeling for a dataset, a team must be specified. Multiple members can be added to a team.

+

Background

+
+

Adding a Team

  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Labeling Teams.
  2. On the Labeling Teams page, click Add Team.
  3. In the displayed Add Team dialog box, enter a team name and description and click OK. The labeling team is added.

    The new team is displayed on the Labeling Teams page. You can view team details in the right pane. There is no member in the new team. Add members to the new team by referring to Adding a Member.

    +
+
+

Deleting a Team

You can delete a team that is no longer used.

+

On the Labeling Teams page, select the target team and click Delete. In the displayed dialog box, click OK.

+
+
+
+ +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0026.html b/docs/modelarts/umn/datalabel-modelarts_0026.html new file mode 100644 index 00000000..285dc0f4 --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0026.html @@ -0,0 +1,26 @@ + + +

Managing Team Members

+

There is no member in a new team. You need to add members who will participate in a team labeling job.

+

A maximum of 100 members can be added to a team. If there are more than 100 members, add them to different teams for better management.

+

Adding a Member

  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Labeling Teams.
  2. On the Labeling Teams page, select a team from the team list on the left and click a team name. The team details are displayed in the right pane.
  3. In the Team Details area, click Add Member.
  4. An email address uniquely identifies a team member. Different members cannot use the same email address. The email address you enter will be recorded and saved in ModelArts. It is used only for ModelArts team labeling. After a member is deleted, the email address will also be deleted.

    +

    Possible values of Role are Labeler, Reviewer, and Team Manager. Only one Team Manager can be set.

    +

    Information about the added member is displayed in the Team Details area.

    +
+
+

Modifying Member Information

You can modify member information if it is changed.

+
  1. In the Team Details area, select the desired member.
  2. In the row containing the desired member, click Modify in the Operation column. In the displayed dialog box, modify the description or role.

    The email address of a member cannot be changed. To change the email address of a member, delete the member, and set a new email address when adding a member.

    +

    Possible values of Role are Labeler, Reviewer, and Team Manager. Only one Team Manager can be set.

    +
+
+

Deleting Members

+
+
+
+ +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0027.html b/docs/modelarts/umn/datalabel-modelarts_0027.html new file mode 100644 index 00000000..4164f0af --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0027.html @@ -0,0 +1,27 @@ + + +

Creating a Team Labeling Job

+

If you enable team labeling when creating a labeling job and assign a team to label the dataset, the system creates a labeling job based on the team by default. After creating the labeling job, you can view the job in the My Creations tab of the dataset.

+

You can also create a team labeling job and assign it to different members in the same team or to other labeling teams.

+

Methods

+
+

Procedure

You can create multiple team labeling jobs for the same dataset and assign them to different members in the same team or to other labeling teams.

+
  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Datasets.
  2. In the dataset list, select a dataset that supports team labeling, and click the dataset name to go to the Dashboard tab of the dataset.
  3. In the Labeling Job area, view existing labeling jobs of the dataset. Click Create to create a job.

    Alternatively, you can choose Data Management > Label Data and click Create Labeling Job.

    +
  4. In the displayed Create Labeling Job page, set parameters and click Create.
    • Name: Enter a job name.
    • Labeling Scene: Select the type of the labeling job.
    • Label Set: All existing labels and label attributes of the dataset are displayed.
    • Team Labeling: Click the button on the right and set the following parameters:
      • Type: Select a job type, Team or Task Manager.
      • Select Team: If Type is set to Team, select a team and members for labeling. The drop-down list displays the labeling teams and their members created by the current account.
      • Select Task Manager: If Type is set to Task Manager, select one Team Manager member from all teams as the task manager.
      • Automatically synchronize new files to the team labeling task: New files in the dataset will be automatically synchronized to the labeling job that has been started.
      • Automatically load the intelligent labeling results to files that need to be labeled: Files are automatically labeled. Annotators can then accept or modify the labels.

        The process of loading auto labeling results to a team labeling job is as follows:

        +
        • If you set Type to Team, you are required to create a team labeling task before executing the job.
        • If you set Type to Task Manager, select a team labeling job in the My Participations tab and click Assign Task.
        +
        +
      +

      After the job is created, you can view the new job in the My Creations tab.

      +
    +
+
+
+
+ +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0028.html b/docs/modelarts/umn/datalabel-modelarts_0028.html new file mode 100644 index 00000000..33be67e5 --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0028.html @@ -0,0 +1,14 @@ + + +

Logging In to ModelArts

+

Typically, users label data in Data Management of the ModelArts console. Data Management provides data management capabilities such as dataset management, data labeling, data import and export, auto labeling, and team labeling and management. After a team labeling job is created, team members can log in to the ModelArts console to view the job.

+
  1. After a labeling job is created, receive a labeling notification email as a team member to which the job is assigned.
  2. Click the labeling job link in the email. The Data Management > Data Labeling > My Participations tab on the ModelArts console is displayed.
  3. In the My Participations tab, you can view your labeling jobs.
+

If a team member has bound an email address, the team member can receive a job notification email and access the data labeling console using the address provided in the email.

+

Upon your login, only the team labeling jobs and related data of the current user (the mailbox user) are displayed.

+
+
+ +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0029.html b/docs/modelarts/umn/datalabel-modelarts_0029.html new file mode 100644 index 00000000..985cd444 --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0029.html @@ -0,0 +1,14 @@ + + +

Starting a Team Labeling Job

+

After logging in to the data labeling page on the management console, you can click the My Participations tab to view the assigned labeling job and click the job name to go to the labeling page. The labeling method varies depending on the labeling job type. For details, see the following:

+ +

On the labeling page, each member can view the images that are not labeled, to be confirmed, rejected, to be reviewed, approved, and accepted. Pay attention to the images rejected by the administrator and the images to be corrected.

+

If the Reviewer role is assigned for a team labeling job, the labeling result needs to be reviewed. After the labeling result is reviewed, it is submitted to the administrator for acceptance.

+
+
+ +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0030.html b/docs/modelarts/umn/datalabel-modelarts_0030.html new file mode 100644 index 00000000..21c25769 --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0030.html @@ -0,0 +1,13 @@ + + +

Reviewing Team Labeling Results

+

After team labeling is complete, the reviewer can review the labeling result.

+
  1. Log in to the ModelArts management console. In the navigation pane, choose Data Management > Label Data. On the Data Labeling page, click My Participations. Locate the row containing the target labeling job and click Review in the Operation column to initiate the review.
  2. On the review page, check the samples that are not reviewed, reviewed, approved, or rejected.
  3. Choose Confirm or Reject on the right of the review page.

    If you choose Confirm, set Rating to A, B, C, or D. Option A indicates the highest score. If you choose Reject, enter the rejection reason in the text box.

    +
+
+
+ +
+ diff --git a/docs/modelarts/umn/datalabel-modelarts_0031.html b/docs/modelarts/umn/datalabel-modelarts_0031.html new file mode 100644 index 00000000..b6010d1f --- /dev/null +++ b/docs/modelarts/umn/datalabel-modelarts_0031.html @@ -0,0 +1,45 @@ + + +

Accepting Team Labeling Results

+

Task Acceptance (Administrator)

+
+

Viewing an Acceptance Report

You can view the acceptance report of an ongoing or finished labeling job. Log in to the management console and choose Data Management > Label Data. On the Data Labeling page, select My Creations and click the name of a team labeling job. The job details page is displayed. In the upper right corner of the page, click Acceptance Report. In the displayed dialog box, view report details.

+
+

Deleting a Labeling Job

After a job is accepted, delete it if the labeling job is no longer used. After a job is deleted, the labeling details that are not accepted will be lost. However, the original data in the dataset and the labeled data that has been accepted are still stored in the corresponding OBS bucket.

+
+
+
+ +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0001.html b/docs/modelarts/umn/dataprepare-modelarts-0001.html new file mode 100644 index 00000000..86063a4b --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0001.html @@ -0,0 +1,17 @@ + + +

Data Preparation

+

The driving forces behind AI are computing power, algorithms, and data. Data quality affects model precision. Generally, a large amount of high-quality data is more likely to train a high-precision AI model. Models trained using normal data achieves 85% to 90% accuracy, while commercial applications have higher requirements. If you want to improve the model accuracy to 96% or even 99%, a large amount of high-quality data is required. In this case, the data must be more refined, scenario-based, and professional. The preparation of a large amount of high-quality data has become a challenging issue in AI development.

+

ModelArts is a one-stop AI development platform that supports AI lifecycle development, including data processing, algorithm development, model training, and model deployment. In addition, ModelArts provides AI Hub that can be used to share data, algorithms, and models. ModelArts data management provides end-to-end data preparation, processing, and labeling.

+

ModelArts data management provides the following functions for you to obtain high-quality AI data:

+ +
+
+ +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0004.html b/docs/modelarts/umn/dataprepare-modelarts-0004.html new file mode 100644 index 00000000..bf29eafd --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0004.html @@ -0,0 +1,20 @@ + + +

Creating a Dataset

+

Before using ModelArts to prepare data, create a dataset. Then, you can perform operations on the dataset, such as importing data, analyzing data, and labeling data.

+
+
+ + + +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0005.html b/docs/modelarts/umn/dataprepare-modelarts-0005.html new file mode 100644 index 00000000..d93aa831 --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0005.html @@ -0,0 +1,286 @@ + + +

Dataset Overview

+

Dataset Types

ModelArts supports the following types of datasets:

+ + +
+

Dataset Functions

Different types of datasets support different functions, such as auto labeling and team labeling. For details, see Table 1.

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Table 1 Functions supported by different types of datasets

Dataset Type

+

Labeling Type

+

Creating a Dataset

+

Importing Data

+

Exporting Data

+

Publishing a Dataset

+

Modifying a Dataset

+

Managing Dataset Versions

+

Auto Grouping

+

Data Features

+

Image

+

+

+

Image classification

+

Supported

+

Supported

+

Supported

+

Supported

+

Supported

+

Supported

+

Supported

+

Supported

+

Object detection

+

Supported

+

Supported

+

Supported

+

Supported

+

Supported

+

Supported

+

Supported

+

Supported

+

Image segmentation

+

Supported

+

Supported

+

Supported

+

Supported

+

Supported

+

Supported

+

Supported

+

N/A

+

Audio

+

Sound classification

+

Supported

+

Supported

+

N/A

+

Supported

+

Supported

+

Supported

+

N/A

+

N/A

+

Speech labeling

+

Supported

+

Supported

+

N/A

+

Supported

+

Supported

+

Supported

+

N/A

+

N/A

+

Speech paragraph labeling

+

Supported

+

Supported

+

N/A

+

Supported

+

Supported

+

Supported

+

N/A

+

N/A

+

Text

+

Text classification

+

Supported

+

Supported

+

N/A

+

Supported

+

Supported

+

Supported

+

N/A

+

N/A

+

Named entity recognition

+

Supported

+

Supported

+

N/A

+

Supported

+

Supported

+

Supported

+

N/A

+

N/A

+

Text triplet

+

Supported

+

Supported

+

N/A

+

Supported

+

Supported

+

Supported

+

N/A

+

N/A

+

Video

+

Video labeling

+

Supported

+

Supported

+

N/A

+

Supported

+

Supported

+

Supported

+

N/A

+

N/A

+

Free format

+

Free format

+

Supported

+

N/A

+

_

+

Supported

+

Supported

+

Supported

+

N/A

+

N/A

+

Table

+

Table

+

Supported

+

Supported

+

N/A

+

Supported

+

Supported

+

Supported

+

N/A

+

N/A

+
+
+
+

Specifications Restrictions

+
+
+
+ +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0006.html b/docs/modelarts/umn/dataprepare-modelarts-0006.html new file mode 100644 index 00000000..691cba95 --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0006.html @@ -0,0 +1,208 @@ + + +

Creating a Dataset

+

Before using ModelArts to manage data, create a dataset. Then, you can perform operations on the dataset, such as labeling data, importing data, and publishing the dataset. This section describes how to create a dataset of the non-table type (image, audio, text, video, and free format) and table type.

+

Prerequisites

+
+

Image, Audio, Text, Video, and Free Format

  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Datasets.

    The number of datasets that can be created under an account in a region is limited. For details, see the number displayed on the Dataset page.

    +

    +
    +
  2. Click Create. On the Create Dataset page, create a dataset based on the data type and data labeling requirements. Enter the basic information about the dataset.
    Figure 1 Parameter settings
    +
    • Name: name of the dataset, which is customizable
    • Description: details about the dataset
    • Data Type: Select a data type based on your needs.
    • Data Source
      1. Importing data from OBS

        If data is available in OBS, select OBS for Data Source, and configure other mandatory parameters. The labeling formats of the input data vary depending on the dataset type. For details about the labeling formats supported by ModelArts, see Introduction to Data Importing.

        +
      2. Importing data from a local path

        If data is not stored in OBS and the required data cannot be downloaded from AI Hub, ModelArts enables you to upload the data from a local path. Before uploading data, configure Storage Path and Labeling Status. Click Upload data to select the local file for uploading. Select a labeling format when the labeling status is Labeled. The labeling formats of the input data vary depending on the dataset type. For details about the labeling formats supported by ModelArts, see Introduction to Data Importing.

        +
      +
    • For more details about parameters, see Table 1. +
      + + + + + + + + + + + + + +
      Table 1 Dataset parameters

      Parameter

      +

      Description

      +

      Import Path

      +

      OBS path from which your data is to be imported. This path is used as the data storage path of the dataset.

      +
      NOTE:

      OBS parallel file systems are not supported. Select an OBS bucket.

      +

      When you create a dataset, data in the OBS path will be imported to the dataset. If you modify data in OBS, the data in the dataset will be inconsistent with that in OBS. As a result, certain data may be unavailable. If you need to modify data in a dataset, you are advised to use the data source synchronization function or the function described in chapter 4.

      +

      If the numbers of samples and labels of the dataset exceed quotas, importing the samples and labels will fail.

      +
      +

      Labeling Status

      +

      Labeling status of the selected data, which can be Unlabeled or Labeled.

      +

      If you select Labeled, specify a labeling format and ensure the data file complies with format specifications. Otherwise, the import may fail.

      +

      Only image (object detection, image classification, and image segmentation), audio (sound classification), and text (text classification) labeling tasks support the import of labeled data.

      +

      Output Dataset Path

      +

      OBS path where your labeled data is stored.

      +
      NOTE:

      The dataset output path cannot be the same as the data input path or subdirectory of the data input path.

      +

      It is a good practice to select an empty directory as the dataset output path.

      +

      OBS parallel file systems are not supported. Select an OBS bucket.

      +
      +
      +
      +
    +
  3. After setting the parameters, click Submit.
+
+

Tables

  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Datasets.

    The number of datasets that can be created under an account in a region is limited. For details, see the number displayed on the Dataset page.

    +

    +
    +
  2. Click Create. On the Create Dataset page, create a dataset based on the data type and data labeling requirements. Enter the basic information about the dataset.
    • Name: name of the dataset, which is customizable
    • Description: details about the dataset
    • Data Type: Select a data type based on your needs.
    • For more details about parameters, see Table 2. +
      + + + + + + + + + + + + + +
      Table 2 Dataset parameters

      Parameter

      +

      Description

      +

      Import Operation

      +

      Storage Path: Select an OBS path.

      +

      Schema

      +

      Names and types of table columns, which must be the same as those of the imported data. Set the column name based on the imported data and select the column type. For details about the supported types, see Table 3.

      +

      Click Add Schema to add a new record. When creating a dataset, you must specify a schema. Once created, the schema cannot be modified.

      +

      When data is imported from OBS, the schema of the CSV file in the file path is automatically obtained. If the schemas of multiple CSV files are inconsistent, an error will be reported.

      +

      Output Dataset Path

      +

      OBS path for storing table data. The data imported from the data source is stored in this path. The path cannot be the same as the file path in the OBS data source or subdirectories of the file path.

      +

      After a table dataset is created, the following four directories are automatically generated in the storage path:

      +
      • annotation: version publishing directory. Each time a version is published, a subdirectory with the same name as the version is generated in this directory.
      • data: data storage directory. Imported data is stored in this directory.
      • logs: directory for storing logs.
      • temp: temporary working directory.
      +
      +
      +
      +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      Table 3 Schema data types

      Type

      +

      Description

      +

      Storage Space

      +

      Range

      +

      String

      +

      String type

      +

      -

      +

      -

      +

      Short

      +

      Signed integer

      +

      2 bytes

      +

      -32768-32767

      +

      Int

      +

      Signed integer

      +

      4 bytes

      +

      -2147483648 to 2147483647

      +

      Long

      +

      Signed integer

      +

      8 bytes

      +

      -9223372036854775808 to 9223372036854775807

      +

      Double

      +

      Double-precision floating point

      +

      8 bytes

      +

      -

      +

      Float

      +

      Single-precision floating point

      +

      4 bytes

      +

      -

      +

      Byte

      +

      Signed integer

      +

      1 byte

      +

      -128-127

      +

      Date

      +

      Date type in the format of "yyyy-MM-dd", for example, 2014-05-29

      +

      -

      +

      -

      +

      Timestamp

      +

      Timestamp that represents date and time in the format of "yyyy-MM-dd HH:mm:ss"

      +

      -

      +

      -

      +

      Boolean

      +

      Boolean type

      +

      1 byte

      +

      TRUE/FALSE

      +
      +
      +

      When using a CSV file, pay attention to the following:

      +
      • When the data type is set to String, the data in the double quotation marks is regarded as one record by default. Ensure the double quotation marks in the same row are closed. Otherwise, the data will be too large to display.
      • If the number of columns in a row of the CSV file is different from that defined in the schema, the row will be ignored.
      +
      +
      +
    +
  3. After setting the parameters, click Submit.
+
+
+
+ +
+ + + \ No newline at end of file diff --git a/docs/modelarts/umn/dataprepare-modelarts-0007.html b/docs/modelarts/umn/dataprepare-modelarts-0007.html new file mode 100644 index 00000000..f81d3ac5 --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0007.html @@ -0,0 +1,19 @@ + + +

Importing Data

+
+
+ + + +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0008.html b/docs/modelarts/umn/dataprepare-modelarts-0008.html new file mode 100644 index 00000000..a24b8acd --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0008.html @@ -0,0 +1,21 @@ + + +

Introduction to Data Importing

+

After a dataset is created, you can import more data. ModelArts allows you to import data from different data sources.

+ +

ModelArts AI Gallery provides a large number of built-in datasets, including file and table datasets. You can download and use the built-in datasets from AI Gallery. You can also import your data to ModelArts.

+

File Data Sources

You can import data by downloading built-in datasets from AI Gallery, or from OBS or a local file. After the import, the data from the import path is automatically synchronized to the data source path of the dataset.

+ +
+

Table Data Sources

You can import data by downloading built-in datasets from AI Gallery, or from OBS, DWS, DLI, MRS, and local files.

+
+

Import Mode

There are five modes for importing data to a dataset.

+ +
+
+
+ +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0010.html b/docs/modelarts/umn/dataprepare-modelarts-0010.html new file mode 100644 index 00000000..44528b87 --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0010.html @@ -0,0 +1,23 @@ + + +

Importing Data from OBS

+
+
+ + + +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0011.html b/docs/modelarts/umn/dataprepare-modelarts-0011.html new file mode 100644 index 00000000..2b449c19 --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0011.html @@ -0,0 +1,162 @@ + + +

Introduction to Importing Data from OBS

+

Import Modes

You can import data from OBS through an OBS path or a manifest file.

+ +

Before importing an object detection dataset, ensure that the labeling range of the labeling file does not exceed the size of the original image. Otherwise, the import may fail.

+
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Table 1 Import modes supported by datasets

Dataset Type

+

Labeling Type

+

From an OBS Path

+

From a Manifest File

+

Image

+

Image classification

+

Supported

+

You can import unlabeled or labeled data.

+

Format specifications of labeled data: Image classification

+

Supported

+

You can import unlabeled or labeled data.

+

Format specifications of labeled data: Image classification

+

Object detection

+

Supported

+

You can import unlabeled or labeled data.

+

Format specifications of labeled data: Image classification

+

Supported

+

You can import unlabeled or labeled data.

+

Format specifications of labeled data: Object detection

+

Image segmentation

+

Supported

+

You can import unlabeled or labeled data.

+

Format specifications of labeled data: Object detection

+

Supported

+

You can import unlabeled or labeled data.

+

Format specifications of labeled data: Object detection

+

Audio

+

Sound classification

+

Supported

+

You can import unlabeled or labeled data.

+

Follow the format specifications described in Sound classification.

+

Supported

+

You can import unlabeled or labeled data.

+

Format specifications of labeled data: Sound classification

+

Speech labeling

+

Supported

+

You can import unlabeled data.

+

Supported

+

You can import unlabeled or labeled data.

+

Format specifications of labeled data: Speech labeling

+

Speech paragraph labeling

+

Supported

+

You can import unlabeled data.

+

Supported

+

You can import unlabeled or labeled data.

+

Format specifications of labeled data: Speech paragraph labeling

+

Text

+

Text classification

+

Supported

+

You can import unlabeled or labeled data.

+

Format specifications of labeled data: Text classification

+

Supported

+

You can import unlabeled or labeled data.

+

Format specifications of labeled data: Text classification

+

Named entity recognition

+

Supported

+

You can import unlabeled data.

+

Supported

+

You can import unlabeled or labeled data.

+

Format specifications of labeled data: Named Entity Recognition

+

Text triplet

+

Supported

+

You can import unlabeled data.

+

Supported

+

You can import unlabeled or labeled data.

+

Format specifications of labeled data: Text triplet

+

Video

+

Video

+

Supported

+

You can import unlabeled data.

+

Supported

+

You can import unlabeled or labeled data.

+

Format specifications of labeled data: Video Labeling

+

Other

+

Free format

+

Supported

+

You can import unlabeled data.

+

-

+

Tables

+

Tables

+

Supported

+

Follow the format specifications described in Tables.

+

-

+
+
+
+
+
+ +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0012.html b/docs/modelarts/umn/dataprepare-modelarts-0012.html new file mode 100644 index 00000000..77dcd112 --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0012.html @@ -0,0 +1,36 @@ + + +

Importing Data from an OBS Path

+

Prerequisites

+
+

Importing File Data from an OBS Path

The parameters on the GUI for data import vary according to the dataset type. The following uses a dataset of the image classification type as an example.

+
  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Datasets.
  2. Locate the row that contains the desired dataset and click Import in the Operation column. Alternatively, you can click the dataset name to go to the Dashboard tab of the dataset, and click Import in the upper right corner.
  3. In the Import dialog box, set the parameters as follows and click OK.
    • Data Source: OBS
    • Import Mode: Path
    • Import Path: OBS path for storing data
    • Labeling Status: Labeled
    • Advanced Feature Settings: This function is disabled by default. You can click the button on the right to enable this function.

      Import by Tag enables the system to automatically obtain the labels of the current dataset. Click Add Label to add a label. This field is optional. After importing the data, you can add or delete labels during data labeling.

      +
    +

    +

    After the data is imported, it will be automatically synchronized to the dataset. On the Datasets page, click the dataset name to view its details and create a labeling job to label the data.

    +
+
+

Labeling Status of File Data

The labeling status can be Unlabeled or Labeled.

+ +
+

Importing a Table Dataset from OBS

ModelArts allows you to import table data (CSV files) from OBS.

+

Import description:

+ +
├─dataset-import-example 
+│      table_import_1.csv 
+│      table_import_2.csv
+│      table_import_3.csv
+│      table_import_4.csv
+
+
+
+ +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0013.html b/docs/modelarts/umn/dataprepare-modelarts-0013.html new file mode 100644 index 00000000..55d3a4f6 --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0013.html @@ -0,0 +1,329 @@ + + +

Specifications for Importing Data from an OBS Directory

+

When importing data from OBS, the data storage directory and file name must comply with the ModelArts specifications.

+

Only the following labeling types of data can be imported by Labeling Format: image classification, object detection, image segmentation, text classification, and sound classification.

+

+
  • To import data from an OBS directory, you must have the read permission on the OBS directory.
  • The OBS buckets and ModelArts must be in the same region.
+
+

Image classification

Data for image classification can be stored in two formats:

+
Format 1: ModelArts imageNet 1.0
  • Images with the same label must be stored in the same directory, with the label name as the directory name. If there are multiple levels of directories, the last level is used as the label name.

    In the following example, Rabbit and Panda are label names.

    +
    dataset-import-example 
    +├─Rabbit 
    +│      10.jpg 
    +│      11.jpg 
    +│      12.jpg 
    +│ 
    +└─Panda 
    +        1.jpg 
    +        2.jpg 
    +        3.jpg
    +
+
+
Format 2: ModelArts image classification 1.0
  • The image and labeled file must be stored in the same directory, with the content in the labeled file used as label names.

    In the following example, import-dir-1 and import-dir-2 are the imported subdirectories:

    +
    dataset-import-example 
    +├─import-dir-1
    +│      10.jpg
    +│      10.txt    
    +│      11.jpg 
    +│      11.txt
    +│      12.jpg 
    +│      12.txt
    +└─import-dir-2
    +        1.jpg 
    +        1.txt
    +        2.jpg 
    +        2.txt
    +

    The following shows a label file for a single label, for example, the 1.txt file:

    +
    Rabbit
    +

    The following shows a label file for multiple labels, for example, the 2.txt file:

    +
    Rabbit
    +Panda
    +
+
+ +
+

Object detection

Data for object detection can be stored in two formats:

+

1)ModelArts PASCAL VOC 1.0

+ +

Format 2: YOLO

+ +
+

Image segmentation

ModelArts image segmentation 1.0:

+ +
+

Text classification

txt and csv files can be imported for text classification, with the text encoding format of UTF-8 or GBK.

+

Labeled objects and labels for text classification can be stored in two formats:

+ +
+

Sound classification

ModelArts audio classification dir 1.0: Sound files with the same label must be stored in the same directory, and the label name is the directory name.

+

Example:

+
dataset-import-example 
+├─Rabbit 
+│      10.wav 
+│      11.wav 
+│      12.wav 
+│ 
+└─Panda 
+        1.wav 
+        2.wav 
+        3.wav
+
+

Tables

CSV files can be imported from OBS. Select the directory where the files are stored. The number of columns in the CSV file must be the same as that in the dataset schema. The schema of the CSV file can be automatically obtained.

+
├─dataset-import-example 
+│      table_import_1.csv 
+│      table_import_2.csv
+│      table_import_3.csv
+│      table_import_4.csv
+
+
+
+ +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0014.html b/docs/modelarts/umn/dataprepare-modelarts-0014.html new file mode 100644 index 00000000..5e921ef4 --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0014.html @@ -0,0 +1,28 @@ + + +

Importing a Manifest File

+

Prerequisites

+
+

Importing File Data from a Manifest File

The parameters on the GUI for data import vary according to the dataset type. The following uses an image dataset as an example.

+
  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Datasets.
  2. Locate the row that contains the desired dataset and click Import in the Operation column. Alternatively, you can click the dataset name to go to the Dashboard tab of the dataset, and click Import in the upper right corner.
  3. In the Import dialog box, set the parameters as follows and click OK.
    • Data Source: OBS
    • Import Mode: manifest
    • Manifest File: OBS path for storing the manifest file
    • Labeling Status: Labeled
    • Advanced Feature Settings: disabled by default

      Import by Tag The system automatically obtains the labels of the dataset. You can click Add Label to add a label. This parameter is optional. If Import by Tag is disabled, you can add or delete labels for imported data when labeling data.

      +

      Import Only Hard Examples: If this parameter is selected, only the hard attribute data of the manifest file is imported.

      +
    +

    After the data is imported, it will be automatically synchronized to the dataset. On the Datasets page, click the dataset name to view its details and create a labeling job to label the data.

    +
+
+

Labeling Status of File Data

The labeling status can be Unlabeled or Labeled.

+ +
+

+
+
+ +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0015.html b/docs/modelarts/umn/dataprepare-modelarts-0015.html new file mode 100644 index 00000000..db124ef6 --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0015.html @@ -0,0 +1,1094 @@ + + +

Specifications for Importing a Manifest File

+

The manifest file defines the mapping between labeled objects and content. The manifest file import mode means that the manifest file is used for dataset import. The manifest file can be imported from OBS. When importing a manifest file from OBS, ensure that you have the permissions to access the directory where the manifest file is stored.

+

There are many requirements on the manifest file compilation. Import new data from OBS. Generally, manifest file import is used for data migration of ModelArts in different regions or using different accounts. If you have labeled data in a region using ModelArts, you can obtain the manifest file of the published dataset from the output path. Then you can import the dataset using the manifest file to ModelArts of other regions or accounts. The imported data carries the labeling information and does not need to be labeled again, improving development efficiency.

+
+

The manifest file that contains information about the original file and labeling can be used in labeling, training, and inference scenarios. The manifest file that contains only information about the original file can be used in inference scenarios or used to generate an unlabeled dataset. The manifest file must meet the following requirements:

+ +

Image classification

 1
+ 2
+ 3
+ 4
+ 5
+ 6
+ 7
+ 8
+ 9
+10
+11
+12
+13
+14
+15
+16
+17
+18
+19
+20
+21
+22
+23
+24
+25
+26
+27
+28
{
+    "source":"s3://path/to/image1.jpg",
+    "usage":"TRAIN",
+    "hard":"true",
+    "hard-coefficient":0.8,
+    "id":"0162005993f8065ef47eefb59d1e4970",
+    "annotation": [
+        {
+            "type": "modelarts/image_classification",
+            "name": "cat",
+            "property": {
+                "color":"white",
+                "kind":"Persian cat"            
+            },
+            "hard":"true",
+            "hard-coefficient":0.8,
+            "annotated-by":"human",
+            "creation-time":"2019-01-23 11:30:30"        
+        },
+        {
+            "type": "modelarts/image_classification",
+            "name":"animal",
+            "annotated-by":"modelarts/active-learning",
+            "confidence": 0.8,
+            "creation-time":"2019-01-23 11:30:30"        
+        }],
+    "inference-loc":"/path/to/inference-output"
+}
+
+ +
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + +
Table 1 Parameters

Parameter

+

Mandatory

+

Description

+

source

+

Yes

+

URI of an object to be labeled. For details about data source types and examples, see Table 2.

+

usage

+

No

+

By default, the parameter value is left blank. Possible values are as follows:

+
  • TRAIN: The object is used for training.
  • EVAL: The object is used for evaluation.
  • TEST: The object is used for testing.
  • INFERENCE: The object is used for inference.
+

If the parameter value is left blank, you decide how to use the object.

+

id

+

No

+

Sample ID exported from the system. You do not need to set this parameter when importing the sample.

+

annotation

+

No

+

If the parameter value is left blank, the object is not labeled. The value of annotation consists of an object list. For details about the parameters, see Table 3.

+

inference-loc

+

No

+

This parameter is available when the file is generated by the inference service, indicating the location of the inference result file.

+
+
+ +
+ + + + + + + + + + +
Table 2 Data source types

Type

+

Examples

+

OBS

+

"source":"s3://path-to-jpg"

+

Content

+

"source":"content://I love machine learning"

+
+
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Table 3 annotation objects

Parameter

+

Mandatory

+

Description

+

type

+

Yes

+

Label type. Possible values are as follows:

+
  • image_classification: image classification
  • text_classification: text classification
  • text_entity: named entity recognition
  • object_detection: object detection
  • audio_classification: sound classification
  • audio_content: speech labeling
  • audio_segmentation: speech paragraph labeling
+

name

+

Yes/No

+

This parameter is mandatory for the classification type but optional for other types. This example uses the image classification type.

+

id

+

Yes/No

+

Label ID. This parameter is mandatory for triplets but optional for other types. The entity label ID of a triplet is in E+number format, for example, E1 and E2. The relationship label ID of a triplet is in R+number format, for example, R1 and R2.

+

property

+

No

+

Labeling property. In this example, there are two properties: color and kind.

+

hard

+

No

+

Indicates whether the example is a hard example. True indicates that the labeling example is a hard example, and False indicates that the labeling example is not a hard example.

+

annotated-by

+

No

+

The default value is human, indicating manual labeling.

+
  • human
+

creation-time

+

No

+

Time when the labeling job was created. It is the time when labeling information was written, not the time when the manifest file was generated.

+

confidence

+

No

+

Confidence score of machine labeling. The value ranges from 0 to 1.

+
+
+
+

Image segmentation

{
+    "annotation": [{
+        "annotation-format": "PASCAL VOC",
+        "type": "modelarts/image_segmentation",
+        "annotation-loc": "s3://path/to/annotation/image1.xml",
+        "creation-time": "2020-12-16 21:36:27",
+        "annotated-by": "human"
+    }],
+    "usage": "train",
+    "source": "s3://path/to/image1.jpg",
+    "id": "16d196c19bf61994d7deccafa435398c",
+    "sample-type": 0
+}
+ + +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Table 4 PASCAL VOC format parameters

Parameter

+

Mandatory

+

Description

+

folder

+

Yes

+

Directory where the data source is located

+

filename

+

Yes

+

Name of the file to be labeled

+

size

+

Yes

+

Image pixel

+
  • width: image width. This parameter is mandatory.
  • height: image height. This parameter is mandatory.
  • depth: number of image channels. This parameter is mandatory.
+

segmented

+

Yes

+

Segmented or not

+

mask_source

+

No

+

Segmentation mask path

+

object

+

Yes

+

Object detection information. Multiple object{} functions are generated for multiple objects.

+
  • name: type of the labeled content. This parameter is mandatory.
  • pose: shooting angle of the labeled content. This parameter is mandatory.
  • truncated: whether the labeled content is truncated (0 indicates that the content is not truncated). This parameter is mandatory.
  • occluded: whether the labeled content is occluded (0 indicates that the content is not occluded). This parameter is mandatory.
  • difficult: whether the labeled object is difficult to identify (0 indicates that the object is easy to identify). This parameter is mandatory.
  • confidence: confidence score of the labeled object. The value ranges from 0 to 1. This parameter is optional.
  • bndbox: bounding box type. This parameter is mandatory. For details about the possible values, see Table 5.
  • mask_color: label color, which is represented by the RGB value. This parameter is mandatory.
+
+
+ +
+ + + + + + + + + +
Table 5 Bounding box types

type

+

Shape

+

Labeling information

+

polygon

+

Polygon

+

Coordinates of points

+

<x1>100<x1>

+

<y1>100<y1>

+

<x2>200<x2>

+

<y2>100<y2>

+

<x3>250<x3>

+

<y3>150<y3>

+

<x4>200<x4>

+

<y4>200<y4>

+

<x5>100<x5>

+

<y5>200<y5>

+

<x6>50<x6>

+

<y6>150<y6>

+

<x7>100<x7>

+

<y7>100<y7>

+
+
+
Example:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
+<annotation>
+    <folder>NA</folder>
+    <filename>image_0006.jpg</filename>
+    <source>
+        <database>Unknown</database>
+    </source>
+    <size>
+        <width>230</width>
+        <height>300</height>
+        <depth>3</depth>
+    </size>
+    <segmented>1</segmented>
+    <mask_source>obs://xianao/out/dataset-8153-Jmf5ylLjRmSacj9KevS/annotation/V001/segmentationClassRaw/image_0006.png</mask_source>
+    <object>
+        <name>bike</name>
+        <pose>Unspecified</pose>
+        <truncated>0</truncated>
+        <difficult>0</difficult>
+        <mask_color>193,243,53</mask_color>
+        <occluded>0</occluded>
+        <polygon>
+            <x1>71</x1>
+            <y1>48</y1>
+            <x2>75</x2>
+            <y2>73</y2>
+            <x3>49</x3>
+            <y3>69</y3>
+            <x4>68</x4>
+            <y4>92</y4>
+            <x5>90</x5>
+            <y5>101</y5>
+            <x6>45</x6>
+            <y6>110</y6>
+            <x7>71</x7>
+            <y7>48</y7>
+        </polygon>
+    </object>
+</annotation>
+
+
+

Text classification

{
+    "source": "content://I like this product ",
+    "id":"XGDVGS",
+    "annotation": [
+        {
+            "type": "modelarts/text_classification",
+            "name": " positive",
+            "annotated-by": "human",
+            "creation-time": "2019-01-23 11:30:30"        
+        } ]
+}
+

The content parameter indicates the text to be labeled. The other parameters are the same as those described in Image classification. For details, see Table 1.

+
+

Named Entity Recognition

{
+    "source":"content://Michael Jordan is the most famous basketball player in the world.",
+    "usage":"TRAIN",
+    "annotation":[
+        {
+            "type":"modelarts/text_entity",
+            "name":"Person",
+            "property":{
+                "@modelarts:start_index":0,
+                "@modelarts:end_index":14
+            },
+            "annotated-by":"human",
+            "creation-time":"2019-01-23 11:30:30"
+        },
+        {
+            "type":"modelarts/text_entity",
+            "name":"Category",
+            "property":{
+                "@modelarts:start_index":34,
+                "@modelarts:end_index":44
+            },
+            "annotated-by":"human",
+            "creation-time":"2019-01-23 11:30:30"
+        }
+    ]
+}
+

+

The parameters such as source, usage, and annotation are the same as those described in Image classification. For details, see Table 1.

+

Table 6 describes the property parameters. For example, if you want to extract Michael from "source":"content://Michael Jordan", the value of start_index is 0 and that of end_index is 7.

+ +
+ + + + + + + + + + + + + +
Table 6 property parameters

Parameter

+

Data type

+

Description

+

@modelarts:start_index

+

Integer

+

Start position of the text. The value starts from 0, including the characters specified by start_index.

+

@modelarts:end_index

+

Integer

+

End position of the text, excluding the characters specified by end_index.

+
+
+
+

Text triplet

{
+    "source":"content://"Three Body" is a series of long science fiction novels created by Liu Cix.",
+    "usage":"TRAIN",
+    "annotation":[
+        {
+            "type":"modelarts/text_entity",
+            "name":"Person",
+            "id":"E1",
+            "property":{
+                "@modelarts:start_index":67,
+                "@modelarts:end_index":74
+            },
+            "annotated-by":"human",
+            "creation-time":"2019-01-23 11:30:30"
+        },
+        {
+            "type":"modelarts/text_entity",
+            "name":"Book",
+            "id":"E2",
+            "property":{
+                "@modelarts:start_index":0,
+                "@modelarts:end_index":12
+            },
+            "annotated-by":"human",
+            "creation-time":"2019-01-23 11:30:30"
+        },
+        {
+            "type":"modelarts/text_triplet",
+            "name":"Author",
+            "id":"R1",
+            "property":{
+                "@modelarts:from":"E1",
+                "@modelarts:to":"E2"
+            },
+            "annotated-by":"human",
+            "creation-time":"2019-01-23 11:30:30"
+        },
+        {
+            "type":"modelarts/text_triplet",
+            "name":"Works",
+            "id":"R2",
+            "property":{
+                "@modelarts:from":"E2",
+                "@modelarts:to":"E1"
+            },
+            "annotated-by":"human",
+            "creation-time":"2019-01-23 11:30:30"
+        }
+    ]
+}
+
+

The parameters such as source, usage, and annotation are the same as those described in Image classification. For details, see Table 1.

+

Table 5 property parameters describes the property parameters. @modelarts:start_index and @modelarts:end_index are the same as those of named entity recognition. For example, when source is set to content://"Three Body" is a series of long science fiction novels created by Liu Cix., Liu Cix is an entity person, Three Body is an entity book, the person is the author of the book, and the book is works of the person.

+ +
+ + + + + + + + + + + + + + + + + + + + + +
Table 7 property parameters

Parameter

+

Data type

+

Description

+

@modelarts:start_index

+

Integer

+

Start position of the triplet entities. The value starts from 0, including the characters specified by start_index.

+

@modelarts:end_index

+

Integer

+

End position of the triplet entities, excluding the characters specified by end_index.

+

@modelarts:from

+

String

+

Start entity ID of the triplet relationship

+

@modelarts:to

+

String

+

Entity ID pointed to in the triplet relationship

+
+
+

Object detection

{
+    "source":"s3://path/to/image1.jpg",
+    "usage":"TRAIN",
+    "hard":"true",
+    "hard-coefficient":0.8,
+    "annotation": [
+        {
+            "type":"modelarts/object_detection",
+            "annotation-loc": "s3://path/to/annotation1.xml",
+            "annotation-format":"PASCAL VOC",
+            "annotated-by":"human",
+            "creation-time":"2019-01-23 11:30:30"                
+        }]
+}
+ + +
+ + + + + + + + + + + + + + + + + + + + + + + + + +
Table 8 PASCAL VOC format parameters

Parameter

+

Mandatory

+

Description

+

folder

+

Yes

+

Directory where the data source is located

+

filename

+

Yes

+

Name of the file to be labeled

+

size

+

Yes

+

Image pixel

+
  • width: image width. This parameter is mandatory.
  • height: image height. This parameter is mandatory.
  • depth: number of image channels. This parameter is mandatory.
+

segmented

+

Yes

+

Segmented or not

+

object

+

Yes

+

Object detection information. Multiple object{} functions are generated for multiple objects.

+
  • name: type of the labeled content. This parameter is mandatory.
  • pose: shooting angle of the labeled content. This parameter is mandatory.
  • truncated: whether the labeled content is truncated (0 indicates that the content is not truncated). This parameter is mandatory.
  • occluded: whether the labeled content is occluded (0 indicates that the content is not occluded). This parameter is mandatory.
  • difficult: whether the labeled object is difficult to identify (0 indicates that the object is easy to identify). This parameter is mandatory.
  • confidence: confidence score of the labeled object. The value ranges from 0 to 1. This parameter is optional.
  • bndbox: bounding box type. This parameter is mandatory. For details about the possible values, see Table 9.
+
+
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + +
Table 9 Bounding box types

type

+

Shape

+

Labeling Information

+

point

+

Point

+

Coordinates of a point

+

<x>100<x>

+

<y>100<y>

+

line

+

Line

+

Coordinates of points

+

<x1>100<x1>

+

<y1>100<y1>

+

<x2>200<x2>

+

<y2>200<y2>

+

bndbox

+

Rectangle

+

Coordinates of the upper left and lower right points

+

<xmin>100<xmin>

+

<ymin>100<ymin>

+

<xmax>200<xmax>

+

<ymax>200<ymax>

+

polygon

+

Polygon

+

Coordinates of points

+

<x1>100<x1>

+

<y1>100<y1>

+

<x2>200<x2>

+

<y2>100<y2>

+

<x3>250<x3>

+

<y3>150<y3>

+

<x4>200<x4>

+

<y4>200<y4>

+

<x5>100<x5>

+

<y5>200<y5>

+

<x6>50<x6>

+

<y6>150<y6>

+

circle

+

Circle

+

Center coordinates and radius

+

<cx>100<cx>

+

<cy>100<cy>

+

<r>50<r>

+
+
+
Example:
<annotation>
+   <folder>test_data</folder>
+   <filename>260730932.jpg</filename>
+   <size>
+       <width>767</width>
+       <height>959</height>
+       <depth>3</depth>
+   </size>
+   <segmented>0</segmented>
+   <object>
+       <name>point</name>
+       <pose>Unspecified</pose>
+       <truncated>0</truncated>
+       <occluded>0</occluded>
+       <difficult>0</difficult>
+       <point>
+           <x1>456</x1>
+           <y1>596</y1>
+       </point>
+   </object>
+   <object>
+       <name>line</name>
+       <pose>Unspecified</pose>
+       <truncated>0</truncated>
+       <occluded>0</occluded>
+       <difficult>0</difficult>
+       <line>
+           <x1>133</x1>
+           <y1>651</y1>
+           <x2>229</x2>
+           <y2>561</y2>
+       </line>
+   </object>
+   <object>
+       <name>bag</name>
+       <pose>Unspecified</pose>
+       <truncated>0</truncated>
+       <occluded>0</occluded>
+       <difficult>0</difficult>
+       <bndbox>
+           <xmin>108</xmin>
+           <ymin>101</ymin>
+           <xmax>251</xmax>
+           <ymax>238</ymax>
+       </bndbox>
+   </object>
+   <object>
+       <name>boots</name>
+       <pose>Unspecified</pose>
+       <truncated>0</truncated>
+       <occluded>0</occluded>
+       <difficult>0</difficult>
+       <hard-coefficient>0.8</hard-coefficient>
+       <polygon>
+           <x1>373</x1>
+           <y1>264</y1>
+           <x2>500</x2>
+           <y2>198</y2>
+           <x3>437</x3>
+           <y3>76</y3>
+           <x4>310</x4>
+           <y4>142</y4>
+       </polygon>
+   </object>
+   <object>
+       <name>circle</name>
+       <pose>Unspecified</pose>
+       <truncated>0</truncated>
+       <occluded>0</occluded>
+       <difficult>0</difficult>
+       <circle>
+           <cx>405</cx>
+           <cy>170</cy>
+           <r>100<r>
+       </circle>
+   </object>
+</annotation>
+
+
+

Sound classification

{
+"source":
+"s3://path/to/pets.wav", 
+    "annotation": [
+        {
+            "type": "modelarts/audio_classification",
+            "name":"cat",    
+            "annotated-by":"human",
+            "creation-time":"2019-01-23 11:30:30"
+        } 
+    ]
+}
+

The parameters such as source, usage, and annotation are the same as those described in Image classification. For details, see Table 1.

+
+

Speech labeling

{
+    "source":"s3://path/to/audio1.wav",
+    "annotation":[
+        {
+            "type":"modelarts/audio_content",
+            "property":{
+                "@modelarts:content":"Today is a good day."
+            },
+            "annotated-by":"human",
+            "creation-time":"2019-01-23 11:30:30"
+        }
+    ]
+}
+ +
+

Speech paragraph labeling

{
+    "source":"s3://path/to/audio1.wav",
+    "usage":"TRAIN",
+    "annotation":[
+        {
+           
+"type":"modelarts/audio_segmentation",
+            "property":{
+                "@modelarts:start_time":"00:01:10.123",
+                "@modelarts:end_time":"00:01:15.456",
+               
+                "@modelarts:source":"Tom",
+               
+                "@modelarts:content":"How are you?"
+            },
+           "annotated-by":"human",
+           "creation-time":"2019-01-23 11:30:30"
+        },
+        {
+           "type":"modelarts/audio_segmentation",
+            "property":{
+                "@modelarts:start_time":"00:01:22.754",
+                "@modelarts:end_time":"00:01:24.145",
+                "@modelarts:source":"Jerry",
+                "@modelarts:content":"I'm fine, thank you."
+            },
+           "annotated-by":"human",
+           "creation-time":"2019-01-23 11:30:30"
+        }
+    ]
+}
+ +
+

Video Labeling

{
+	"annotation": [{
+		"annotation-format": "PASCAL VOC",
+		"type": "modelarts/object_detection",
+		"annotation-loc": "s3://path/to/annotation1_t1.473722.xml",
+		"creation-time": "2020-10-09 14:08:24",
+		"annotated-by": "human"
+	}],
+	"usage": "train",
+	"property": {
+		"@modelarts:parent_duration": 8,
+		"@modelarts:parent_source": "s3://path/to/annotation1.mp4",
+		"@modelarts:time_in_video": 1.473722
+	},
+	"source": "s3://input/path/to/annotation1_t1.473722.jpg",
+	"id": "43d88677c1e9a971eeb692a80534b5d5",
+	"sample-type": 0
+}
+ + +
+ + + + + + + + + + + + + + + + + +
Table 11 property parameters

Parameter

+

Data type

+

Description

+

@modelarts:parent_duration

+

Double

+

Duration of the labeled video, in seconds

+

@modelarts:time_in_video

+

Double

+

Timestamp of the labeled video frame, in seconds

+

@modelarts:parent_source

+

String

+

OBS path of the labeled video

+
+
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + +
Table 12 PASCAL VOC format parameters

Parameter

+

Mandatory

+

Description

+

folder

+

Yes

+

Directory where the data source is located

+

filename

+

Yes

+

Name of the file to be labeled

+

size

+

Yes

+

Image pixel

+
  • width: image width. This parameter is mandatory.
  • height: image height. This parameter is mandatory.
  • depth: number of image channels. This parameter is mandatory.
+

segmented

+

Yes

+

Segmented or not

+

object

+

Yes

+

Object detection information. Multiple object{} functions are generated for multiple objects.

+
  • name: type of the labeled content. This parameter is mandatory.
  • pose: shooting angle of the labeled content. This parameter is mandatory.
  • truncated: whether the labeled content is truncated (0 indicates that the content is not truncated). This parameter is mandatory.
  • occluded: whether the labeled content is occluded (0 indicates that the content is not occluded). This parameter is mandatory.
  • difficult: whether the labeled object is difficult to identify (0 indicates that the object is easy to identify). This parameter is mandatory.
  • confidence: confidence score of the labeled object. The value ranges from 0 to 1. This parameter is optional.
  • bndbox: bounding box type. This parameter is mandatory. For details about the possible values, see Table 13.
+
+
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + +
Table 13 Bounding box types

type

+

Shape

+

Labeling Information

+

point

+

Point

+

Coordinates of a point

+

<x>100<x>

+

<y>100<y>

+

line

+

Line

+

Coordinates of points

+

<x1>100<x1>

+

<y1>100<y1>

+

<x2>200<x2>

+

<y2>200<y2>

+

bndbox

+

Rectangle

+

Coordinates of the upper left and lower right points

+

<xmin>100<xmin>

+

<ymin>100<ymin>

+

<xmax>200<xmax>

+

<ymax>200<ymax>

+

polygon

+

Polygon

+

Coordinates of points

+

<x1>100<x1>

+

<y1>100<y1>

+

<x2>200<x2>

+

<y2>100<y2>

+

<x3>250<x3>

+

<y3>150<y3>

+

<x4>200<x4>

+

<y4>200<y4>

+

<x5>100<x5>

+

<y5>200<y5>

+

<x6>50<x6>

+

<y6>150<y6>

+

circle

+

Circle

+

Center coordinates and radius

+

<cx>100<cx>

+

<cy>100<cy>

+

<r>50<r>

+
+
+
Example:
<annotation>
+   <folder>test_data</folder>
+   <filename>260730932_t1.473722.jpg.jpg</filename>
+   <size>
+       <width>767</width>
+       <height>959</height>
+       <depth>3</depth>
+   </size>
+   <segmented>0</segmented>
+   <object>
+       <name>point</name>
+       <pose>Unspecified</pose>
+       <truncated>0</truncated>
+       <occluded>0</occluded>
+       <difficult>0</difficult>
+       <point>
+           <x1>456</x1>
+           <y1>596</y1>
+       </point>
+   </object>
+   <object>
+       <name>line</name>
+       <pose>Unspecified</pose>
+       <truncated>0</truncated>
+       <occluded>0</occluded>
+       <difficult>0</difficult>
+       <line>
+           <x1>133</x1>
+           <y1>651</y1>
+           <x2>229</x2>
+           <y2>561</y2>
+       </line>
+   </object>
+   <object>
+       <name>bag</name>
+       <pose>Unspecified</pose>
+       <truncated>0</truncated>
+       <occluded>0</occluded>
+       <difficult>0</difficult>
+       <bndbox>
+           <xmin>108</xmin>
+           <ymin>101</ymin>
+           <xmax>251</xmax>
+           <ymax>238</ymax>
+       </bndbox>
+   </object>
+   <object>
+       <name>boots</name>
+       <pose>Unspecified</pose>
+       <truncated>0</truncated>
+       <occluded>0</occluded>
+       <difficult>0</difficult>
+       <hard-coefficient>0.8</hard-coefficient>
+       <polygon>
+           <x1>373</x1>
+           <y1>264</y1>
+           <x2>500</x2>
+           <y2>198</y2>
+           <x3>437</x3>
+           <y3>76</y3>
+           <x4>310</x4>
+           <y4>142</y4>
+       </polygon>
+   </object>
+   <object>
+       <name>circle</name>
+       <pose>Unspecified</pose>
+       <truncated>0</truncated>
+       <occluded>0</occluded>
+       <difficult>0</difficult>
+       <circle>
+           <cx>405</cx>
+           <cy>170</cy>
+           <r>100<r>
+       </circle>
+   </object>
+</annotation>
+
+
+
+
+ +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0019.html b/docs/modelarts/umn/dataprepare-modelarts-0019.html new file mode 100644 index 00000000..fa0f7548 --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0019.html @@ -0,0 +1,19 @@ + + +

Importing Data from Local Files

+

Prerequisites

+
+

Import Operation

Both file and table data can be uploaded from local files. The data uploaded from local files should be stored in an OBS directory. You must have created an OBS bucket.

+

In a single batch upload, a maximum of 100 files can be uploaded at a time, and the total size of the files cannot exceed 5 GB.

+

The parameters on the GUI for data import vary according to the dataset type. The following uses a dataset of the image classification type as an example.

+
  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Datasets.
  2. Locate the row that contains the desired dataset and click Import in the Operation column.

    Alternatively, you can click the dataset name to go to the Dashboard tab of the dataset, and click Import in the upper right corner.

    +
  3. In the Import dialog box, set the parameters as follows and click OK.
    • Data Source: Local file
    • Storage Path: Select an OBS path.
    • Uploading Data: Click Upload data, upload local data, and click OK.
    +
+
+
+
+ +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0020.html b/docs/modelarts/umn/dataprepare-modelarts-0020.html new file mode 100644 index 00000000..5beaaad4 --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0020.html @@ -0,0 +1,23 @@ + + +

Data Analysis and Preview

+

Generally, the quality of raw data cannot meet training requirements, for example, invalid or duplicate data exists. To help you improve data quality, ModelArts provides the following capabilities:

+ +
+
+ + + +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0021.html b/docs/modelarts/umn/dataprepare-modelarts-0021.html new file mode 100644 index 00000000..2e20efdb --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0021.html @@ -0,0 +1,13 @@ + + +

Processing Data

+

After data is collected and imported, the data cannot directly meet the training requirements. Process data during R&D to ensure data quality and prevent negative impact on subsequent operations (such as data labeling and model training). ModelArts provides data processing to extract valuable and meaningful data from a large amount of disordered and difficult-to-understand data.

+

ModelArts provides four basic data processing functions:

+ +
+
+ +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0022.html b/docs/modelarts/umn/dataprepare-modelarts-0022.html new file mode 100644 index 00000000..54548fc0 --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0022.html @@ -0,0 +1,24 @@ + + +

Auto Grouping

+

To improve the precision of auto labeling algorithms, you can evenly label multiple classes. ModelArts provides built-in grouping algorithms. You can enable auto grouping to improve data labeling efficiency.

+

Auto grouping can be understood as data labeling preprocessing. Clustering algorithms are used to cluster unlabeled images, and images are labeled or cleaned by group based on the clustering result.

+

For example, a user searches for XX through a search engine, downloads and uploads related images to the dataset, and then uses the auto grouping function to classify XX images, such as papers, posters, images confirmed as XX, and others. The user can quickly remove unwanted images from a group or select all images of a type and add labels to the images.

+

Only datasets of image classification, object detection, and image segmentation types support the auto grouping function.

+
+

Starting Auto Grouping Tasks

  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Label Data.
  2. In the labeling job list, select a labeling job of the object detection or image classification type and click the labeling job name to go to the labeling job details page.
  3. In the All statuses tab of the dataset details page, choose Auto Grouping > Start Task.

    You can start auto group tasks or view task history only in the All tab.

    +
    +
  4. In the displayed Auto Grouping dialog box, set parameters and click OK.
    • Groups: Enter an integer from 2 to 200. The parameter value indicates the number of groups into which images are divided.
    • Result Processing Method: Select Update attribute or Save to OBS.
    • Attribute Name: If you select Update attribute, you need to enter an attribute name.
    • Result Storage Path: If you select Save to OBS, specify an OBS path.
    • Advanced Feature Settings: After this function is enabled, you can select Clarity, Brightness, and Color dimensions for the auto grouping function so that the grouping is based on the image brightness, color, and clarity. You can select multiple options.
    +
  5. After the task is submitted, the task progress is displayed in the upper right corner of the page. After the task is complete, you can view the history of the auto grouping tasks to learn task status.
+
+

Viewing the Auto Grouping Result

In the All tab of the dataset details page, expand Filter Criteria, set Sample Attribute to the attribute name of the auto grouping task, and set the sample attribute value to filter the grouping result.

+
+

Viewing Auto Grouping Task History

In the All tab of the dataset details page, choose Auto Grouping > View Task History. In the View Task History dialog box, basic information about the auto grouping tasks of the current dataset is displayed.

+
+
+
+ +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0023.html b/docs/modelarts/umn/dataprepare-modelarts-0023.html new file mode 100644 index 00000000..25d07aa8 --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0023.html @@ -0,0 +1,14 @@ + + +

Data Filtering

+

On the Dashboard tab page of the dataset, the summary of the dataset is displayed by default. In the upper right corner of the page, click Label. The dataset details page is displayed, showing all data in the dataset by default. On the All, Unlabeled, or Labeled tab page, you can add filter criteria in the filter criteria area to quickly filter the data you want to view.

+

The following filter criteria are supported. You can set one or more filter criteria.

+ + +
+
+ +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0024.html b/docs/modelarts/umn/dataprepare-modelarts-0024.html new file mode 100644 index 00000000..90f93b2c --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0024.html @@ -0,0 +1,158 @@ + + +

Data Feature Analysis

+

Images or target bounding boxes are analyzed based on image features, such as blurs and brightness to draw visualized curves to help process datasets.

+

You can also select multiple versions of a dataset to view their curves for comparison and analysis.

+

Background

+
+

Data Feature Analysis

  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Datasets. The Datasets page is displayed.
  2. Select a dataset and click Data Features in the Operation column. The Data Features tab of the dataset page is displayed.

    You can also click a dataset name to go to the dataset page and click the Data Features tab.

    +
  3. By default, feature analysis is not started for published datasets. You need to manually start feature analysis tasks for each dataset version. In the Data Features tab, click Feature Analysis.
  4. In the displayed dialog box, configure the dataset version for feature analysis and click OK to start analysis.

    Version: Select a published version of the dataset.

    +
  5. After a data feature analysis task is started, it takes a certain period of time to complete, depending on the data volume. If the selected version is displayed in the Version drop-down list and can be selected, the analysis is complete.
  6. View the data feature analysis result.

    Version: Select the version to be compared from the drop-down list You can also select only one version.

    +

    Type: Select the type to be analyzed. The value can be all, train, eval, or inference.

    +

    Data Feature Metric: Select metrics to be displayed from the drop-down list. For details, see Supported Data Feature Metrics.

    +

    Then, the selected version and metrics are displayed on the page. The displayed chart helps you understand data distribution for better data processing.

    +
  7. View historical records of the analysis task.

    After data feature analysis is complete, you can click Task History on the right of the Data Features tab to view historical analysis tasks and their statuses in the displayed dialog box.

    +
+
+

Supported Data Feature Metrics

+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Table 1 Data feature metrics

Metric

+

Description

+

Explanation

+

Resolution

+

+

Image resolution. An area value is used as a statistical value.

+

Metric analysis results are used to check whether there is an offset point. If an offset point exists, you can resize or delete the offset point.

+

Aspect Ratio

+

+

An aspect ratio is a proportional relationship between an image's width and height.

+

The chart of the metric is in normal distribution, which is generally used to compare the difference between the training set and the dataset used in the real scenario.

+

Brightness

+

+

Brightness is the perception elicited by the luminance of a visual target. A larger value indicates better image brightness.

+

The chart of the metric is in normal distribution. You can determine whether the brightness of the entire dataset is high or low based on the distribution center. You can adjust the brightness based on your application scenario. For example, if the application scenario is night, the brightness should be lower.

+

Saturation

+

+

Color saturation of an image. A larger value indicates that the entire image color is easier to distinguish.

+

The chart of the metric is in normal distribution, which is generally used to compare the difference between the training set and the dataset used in the real scenario.

+

Blur Score

+

Clarity

+

Image clarity, which is calculated using the Laplace operator. A larger value indicates clearer edges and higher clarity.

+

You can determine whether the clarity meets the requirements based on the application scenario. For example, if data is collected from HD cameras, the clarity must be higher. You can sharpen or blur the dataset and add noises to adjust the clarity.

+

Colorfulness

+

+

Horizontal coordinate: Colorfulness of an image. A larger value indicates richer colors.

+

Vertical coordinate: Number of images

+

Colorfulness on the visual sense, which is generally used to compare the difference between the training set and the dataset used in the real scenario.

+

Bounding Box Number

+

+

Horizontal coordinate: Number of bounding boxes in an image

+

Vertical coordinate: Number of images

+

It is difficult for a model to detect a large number of bounding boxes in an image. Therefore, more images containing many bounding boxes are required for training.

+

Std of Bounding Boxes Area Per Image

+

Standard Deviation of Bounding Boxes Per Image

+

Horizontal coordinate: Standard deviation of bounding boxes in an image. If an image has only one bounding box, the standard deviation is 0. A larger standard deviation indicates higher bounding box size variation in an image.

+

Vertical coordinate: Number of images

+

It is difficult for a model to detect a large number of bounding boxes with different sizes in an image. You can add data for training based on scenarios or delete data if such scenarios do not exist.

+

Aspect Ratio of Bounding Boxes

+

+

Horizontal coordinate: Aspect ratio of the target bounding boxes

+

Vertical coordinate: Number of bounding boxes in all images

+

The chart of the metric is generally in Poisson distribution, which is closely related to application scenarios. This metric is mainly used to compare the differences between the training set and the validation set. For example, if the training set is a rectangle, the result will be significantly affected if the validation set is close to a square.

+

Area Ratio of Bounding Boxes

+

+

Horizontal coordinate: Area ratio of the target bounding boxes, that is, the ratio of the bounding box area to the entire image area. A larger value indicates a higher ratio of the object in the image.

+

Vertical coordinate: Number of bounding boxes in all images

+

The metric is used to determine the distribution of anchors used in the model. If the target bounding box is large, set the anchor to a large value.

+

Marginalization Value of Bounding Boxes

+

+

Horizontal coordinate: Marginalization degree, that is, the ratio of the distance between the center point of the target bounding box and the center point of the image to the total distance of the image. A larger value indicates that the object is closer to the edge. (The total distance of an image is the distance from the intersection point of a ray (that starts from the center point of the image and passes through the center point of the bounding box) and the image border to the center point of the image.)

+

Vertical coordinate: Number of bounding boxes in all images

+

Generally, the chart of the metric is in normal distribution. The metric is used to determine whether an object is at the edge of an image. If a part of an object is at the edge of an image, you can add a dataset or do not label the object.

+

Overlap Score of Bounding Boxes

+

Overlap Score of Bounding Boxes

+

Horizontal coordinate: Overlap degree, that is, the part of a single bounding box overlapped by other bounding boxes. The value ranges from 0 to 1. A larger value indicates that more parts are overlapped by other bounding boxes.

+

Vertical coordinate: Number of bounding boxes in all images

+

The metric is used to determine the overlapping degree of objects to be detected. Overlapped objects are difficult to detect. You can add a dataset or do not label some objects based on your needs.

+

Brightness of Bounding Boxes

+

Brightness of Bounding Boxes

+

Horizontal coordinate: Brightness of the image in the target bounding box. A larger value indicates brighter image.

+

Vertical coordinate: Number of bounding boxes in all images

+

Generally, the chart of the metric is in normal distribution. The metric is used to determine the brightness of an object to be detected. In some special scenarios, the brightness of an object is low and may not meet the requirements.

+

Blur Score of Bounding Boxes

+

Clarity of Bounding Boxes

+

Horizontal coordinate: Clarity of the image in the target bounding box. A larger value indicates higher image clarity.

+

Vertical coordinate: Number of bounding boxes in all images

+

The metric is used to determine whether the object to be detected is blurred. For example, a moving object may become blurred during collection and its data needs to be collected again.

+
+
+
+
+
+ +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0025.html b/docs/modelarts/umn/dataprepare-modelarts-0025.html new file mode 100644 index 00000000..a578788c --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0025.html @@ -0,0 +1,12 @@ + + +

Labeling Data

+

Model training requires a large amount of labeled data. Therefore, before training a model, label data. You can create a manual labeling job labeled by one person or by a group of persons (team labeling), or enable auto labeling to quickly label images. You can also modify existing labels, or delete them and re-label.

+ +
+
+ +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0026.html b/docs/modelarts/umn/dataprepare-modelarts-0026.html new file mode 100644 index 00000000..99a4f495 --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0026.html @@ -0,0 +1,19 @@ + + +

Publishing Data

+
+
+ + + +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0027.html b/docs/modelarts/umn/dataprepare-modelarts-0027.html new file mode 100644 index 00000000..cf331848 --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0027.html @@ -0,0 +1,13 @@ + + +

Introduction to Data Publishing

+

ModelArts distinguishes data of the same source according to versions processed or labeled at different time, which facilitates the selection of dataset versions for subsequent model building and development.

+

About Dataset Versions

+
+
+
+ +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0028.html b/docs/modelarts/umn/dataprepare-modelarts-0028.html new file mode 100644 index 00000000..ba45f669 --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0028.html @@ -0,0 +1,116 @@ + + +

Publishing a Data Version

+
  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Datasets.
  2. Locate the row containing the target dataset and click Publish in the Operation column. Alternatively, click the dataset name to go to the Dashboard tab of the dataset, and click Publish in the upper right corner.
  3. In the displayed dialog box, set the parameters and click OK. +
    + + + + + + + + + + + + + + + + + + + +
    Table 1 Parameters for publishing a dataset

    Parameter

    +

    Description

    +

    Version

    +

    The naming rules of V001 and V002 in ascending order are used by default. A version name can be customized. Only letters, digits, hyphens (-), and underscores (_) are allowed.

    +

    Format

    +

    +

    Only table datasets support version format setting. Available values are CSV and CarbonData.

    +
    NOTE:

    If the exported CSV file contains any command starting with =, +, -, or @, ModelArts automatically adds the Tab setting and escapes the double quotation marks (") for security purposes.

    +
    +

    Splitting

    +

    Only image classification, object detection, text classification, and sound classification datasets support data splitting.

    +

    By default, this function is disabled. After this function is enabled, set the training and validation ratios.

    +

    Enter a value ranging from 0 to 1 for Training Set Ratio. After the training set ratio is set, the validation set ratio is determined. The sum of the training set ratio and the validation set ratio is 1.

    +
    NOTE:

    To ensure the model accuracy, you are advised to set the training set ratio to 0.8 or 0.9.

    +
    +

    The training set ratio is the ratio of sample data used for model training. The validation set ratio is the ratio of the sample data used for model validation. The training and validation ratios affect the performance of training templates.

    +

    Description

    +

    Description of the current dataset version.

    +

    Hard Example

    +

    Only image classification and object detection datasets support hard example attributes.

    +

    By default, this function is disabled. After this function is enabled, information such as the hard example attributes of the dataset are written to the corresponding manifest file.

    +
    +
    +
+

Directory Structure of Dataset Versions

Datasets are managed based on OBS directories. After a new version is published, the directory is generated based on the new version in the output dataset path.

+

Take an image classification dataset as an example. After the dataset is published, the directory structure of related files generated in OBS is as follows:

+
|-- user-specified-output-path
+    |-- DatasetName-datasetId
+        |-- annotation
+            |-- VersionMame1
+                |-- VersionMame1.manifest
+            |-- VersionMame2
+                ...
+            |-- ...
+

The following uses object detection as an example. If a manifest file is imported to the dataset, the following provides the directory structure of related files after the dataset is published:

+
|-- user-specified-output-path 
+    |-- DatasetName-datasetId 
+        |-- annotation 
+            |-- VersionMame1 
+                |-- VersionMame1.manifest 
+                |-- annotation
+                   |-- file1.xml 
+            |-- VersionMame2
+                ...
+            |-- ...
+

Take video labeling as an example. After the dataset is published, the labeling result file (XML) is stored in the dataset output directory.

+
 1
+ 2
+ 3
+ 4
+ 5
+ 6
+ 7
+ 8
+ 9
+10
+11
+12
+13
+14
|-- user-specified-output-path
+     |-- DatasetName-datasetId
+         |-- annotation
+             |-- VersionMame1
+                 |-- VersionMame1.manifest
+                 |-- annotations
+                   |-- images
+                       |-- videoName1
+                          |-- videoName1.timestamp.xml
+                        |-- videoName2
+                          |-- videoName2.timestamp.xml
+            |-- VersionMame2
+                ...
+            |-- ...
+
+ +
+

The key frames for video labeling are stored in the dataset input directory.

+
|-- user-specified-input-path
+     |-- images
+        |-- videoName1
+             |-- videoName1.timestamp.jpg
+         |-- videoName2
+             |-- videoName2.timestamp.jpg 
+
+

+
+
+ +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0029.html b/docs/modelarts/umn/dataprepare-modelarts-0029.html new file mode 100644 index 00000000..b1d5d965 --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0029.html @@ -0,0 +1,30 @@ + + +

Managing Data Versions

+

During data preparation, you can publish data into multiple versions for dataset management. You can view version updates, set the current version, and delete versions.

+

Viewing Dataset Version Updates

  1. Log in to the ModelArts management console. In the left navigation pane, choose Data Management > Datasets.
  2. In the dataset list, choose More > Manage Version in the Operation column. The Manage Version tab page is displayed.

    You can view basic information about the dataset, and view the versions and publish time on the left.

    +
    Figure 1 Viewing dataset versions
    +
+
+

Setting to Current Version

  1. Log in to the ModelArts management console. In the left navigation pane, choose Data Management > Datasets.
  2. In the dataset list, choose More > Manage Version in the Operation column. The Manage Version tab page is displayed.
  3. On the Manage Version tab page, select the desired dataset version, and click Set to Current Version in the basic information area on the right. After the setting is complete, Current version is displayed to the right of the version name.

    Only the version in Normal status can be set to the current version.

    +
    +
+
+

Deleting a Dataset Version

  1. Log in to the ModelArts management console. In the left navigation pane, choose Data Management > Datasets.
  2. In the dataset list, choose More > Manage Version in the Operation column. The Manage Version tab page is displayed.
  3. Locate the row that contains the target version, and click Delete in the Operation column. In the dialog box that is displayed, click OK.

    Deleting a dataset version does not remove the original data. Data and its labeling information are still stored in the OBS directory. However, this affects version management. Exercise caution when performing this operation.

    +
    +
+
+
+
+ +
+ + + \ No newline at end of file diff --git a/docs/modelarts/umn/dataprepare-modelarts-0030.html b/docs/modelarts/umn/dataprepare-modelarts-0030.html new file mode 100644 index 00000000..c6e0fdd7 --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0030.html @@ -0,0 +1,19 @@ + + +

Exporting Data

+
+
+ + + +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0031.html b/docs/modelarts/umn/dataprepare-modelarts-0031.html new file mode 100644 index 00000000..4f0c3ab5 --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0031.html @@ -0,0 +1,13 @@ + + +

Introduction to Exporting Data

+

You can select data or filter data based on the filter criteria in a dataset and export to a new dataset or the specified OBS path. The historical export records can be viewed in task history.

+

Only datasets of image classification, object detection, and image segmentation types can be exported.

+ +
+
+ +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0032.html b/docs/modelarts/umn/dataprepare-modelarts-0032.html new file mode 100644 index 00000000..2a94033f --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0032.html @@ -0,0 +1,15 @@ + + +

Exporting Data to a New Dataset

+
  1. Log in to the ModelArts management console. In the left navigation pane, choose Data Management > Datasets.
  2. In the dataset list, select an image dataset and click the dataset name to go to the Dashboard tab page of the dataset.
  3. Click Export in the upper right corner. In the displayed Export To dialog box, enter the related information and click OK.

    Type: New Dataset.

    +

    Name: name of the new dataset

    +

    Storage Path: input path of the new dataset, that is, the OBS path where the data to be exported is stored

    +

    Output Path: output path of the new dataset, that is, the output path after labeling is complete The output path cannot be the same as the storage path, and the output path cannot be a subdirectory of the storage path.

    +
  4. After the data is exported, view it in the specified path. After the data is exported, you can view the new dataset in the dataset list.
  5. On the Dashboard tab page, click Export History in the upper right corner. In the displayed dialog box, view the task history of the dataset.
+
+
+ +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0033.html b/docs/modelarts/umn/dataprepare-modelarts-0033.html new file mode 100644 index 00000000..60255316 --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0033.html @@ -0,0 +1,13 @@ + + +

Exporting Data to OBS

+
  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Datasets.
  2. In the dataset list, select an image dataset and click the dataset name to go to the Dashboard tab of the dataset.
  3. Click Export in the upper right corner. In the displayed Export To dialog box, enter the related information and click OK.

    Type: OBS.

    +

    Storage Path: path where the data to be exported is stored. You are advised not to save data to the input or output path of the current dataset.

    +
  4. After the data is exported, view it in the specified path.
  5. In the Dashboard tab, click Export History in the upper right corner. In the displayed dialog box, view the task history of the dataset.
+
+
+ +
+ diff --git a/docs/modelarts/umn/dataprepare-modelarts-0035.html b/docs/modelarts/umn/dataprepare-modelarts-0035.html new file mode 100644 index 00000000..8e18f3aa --- /dev/null +++ b/docs/modelarts/umn/dataprepare-modelarts-0035.html @@ -0,0 +1,35 @@ + + +

Modifying a Dataset

+

The basic information of a created dataset can be modified to keep pace with service changes.

+

Prerequisites

A created dataset is available.

+
+

Modifying the Basic Information of a Dataset

  1. Log in to the ModelArts management console. In the navigation pane on the left, choose Data Management > Datasets. The Datasets page is displayed.
  2. In the dataset list, choose More > Modify in the Operation column of the target dataset.
  3. Modify the basic information by referring to Table 1 and click OK. +
    + + + + + + + + + + +
    Table 1 Parameters

    Parameter

    +

    Description

    +

    Name

    +

    Name of a dataset, which must be 1 to 64 characters long and start with a letter. Only letters, digits, underscores (_), and hyphens (-) are allowed. The name must start with a letter.

    +

    Description

    +

    Brief description of the dataset.

    +
    +
    +
+
+
+
+ +
+ diff --git a/docs/modelarts/umn/dataprocess-modelarts-00001.html b/docs/modelarts/umn/dataprocess-modelarts-00001.html new file mode 100644 index 00000000..d6eecfd6 --- /dev/null +++ b/docs/modelarts/umn/dataprocess-modelarts-00001.html @@ -0,0 +1,18 @@ + + +

Data Processing Overview

+

ModelArts provides the data processing function to extract valuable and meaningful data from a large amount of disordered and difficult-to-understand data. After data is collected and accessed, the data cannot directly meet the training requirements. Process data during R&D to ensure data quality and prevent negative impact on subsequent operations (such as data labeling and model training).

+

Common data processing types are as follows:

+ +
+
+ +
+ diff --git a/docs/modelarts/umn/dataprocess-modelarts-00002.html b/docs/modelarts/umn/dataprocess-modelarts-00002.html new file mode 100644 index 00000000..7e537173 --- /dev/null +++ b/docs/modelarts/umn/dataprocess-modelarts-00002.html @@ -0,0 +1,21 @@ + + +

Description of Built-in Operators for Data Processing

+
+
+ + + +
+ diff --git a/docs/modelarts/umn/dataprocess-modelarts-00003.html b/docs/modelarts/umn/dataprocess-modelarts-00003.html new file mode 100644 index 00000000..44df77ae --- /dev/null +++ b/docs/modelarts/umn/dataprocess-modelarts-00003.html @@ -0,0 +1,224 @@ + + +

Data Validation

+

MetaValidation Operator Overview

ModelArts data validation uses the MetaValidation operator and supports the following image formats: JPG, JPEG, BMP, and PNG. The object detection scenario supports the XML labeling format but does not support the non-rectangular box labeling format. The MetaValidation operator supports data validation for images and XML files.

+ +
+ + + + + + + + + + + + + + + + + + + + + + +
Table 1 Image data validation

Exception

+

Solution

+

The images are damaged and cannot be decoded.

+

Filters out images that cannot be decoded.

+

The image channel can be channel 1 or channel 2. Channel 3 is not commonly used.

+

Converts images into RGB three-channel images.

+

The image format is not supported by ModelArts.

+

Converts the image format to JPG.

+

The image suffix is inconsistent with the actual format, but the format is supported by ModelArts.

+

Coverts the suffix to the actual format.

+

The image suffix is inconsistent with the actual format and the format is not supported by ModelArts.

+

Converts the image format to JPG.

+

The image resolution is too high.

+

The image width and height are cropped based on the specified size and ratio.

+
+
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Table 2 Labeling file data validation

Exception

+

Solution

+

The XML structure is incomplete and cannot be parsed.

+

Filters XML files.

+

No labeled object is in the XML file.

+

Filters XML files.

+

The XML file does not contain rectangle bndbox.

+

Filters XML files.

+

Some labeled objects do not have rectangle bndbox.

+

Filters labeled objects.

+

After an image is cropped, the width and height of the image are inconsistent with those in the XML file.

+

Changes the values of the width and height parameters to the actual width and height of the image.

+

No width and height fields exist in XML files.

+

Supplements the width and height fields and values in the XML file based on the actual width and height of the image.

+

After an image is cropped, its size is inconsistent with the size of rectangle bndbox in the XML file.

+

Changes the value of bndbox in the XML file based on the image cropping ratio.

+

The width or height of rectangle bndbox in the XML file is too small and is displayed as a line.

+

If the difference between the width and height of the rectangle is less than 2, removes the current object.

+

In the XML file, the minimum value of rectangle bndbox is greater than the maximum value.

+

Removes the current object.

+

Rectangle bndbox exceeds the image boundaries, and the excess part occupies more than 50% of the frame area.

+

Removes the current object.

+

Rectangle bndbox exceeds the image boundaries, and the excess part occupies less than 50% of the frame area.

+

Rectangle bndbox is pulled back to the image boundaries.

+
+
+

Original data is not changed during data validation. The newly validated image or XML file is saved in the specified output path.

+
+
+

Parameters

+
+ + + + + + + + + + + + + + + + +
Table 3 Parameters of the MetaValidation operator for data validation

Name

+

Mandatory

+

Default

+

Description

+

image_max_width

+

No

+

-1

+

Maximum width of an input image. If the width of an input image exceeds the configured value, the image is cropped based on the ratio. The unit is pixel.

+

The default value -1 indicates that the image is not cropped.

+

image_max_height

+

No

+

-1

+

Maximum length of an input image. If the length of an input image exceeds the configured value, the image is cropped based on the ratio. The unit is pixel.

+

The default value -1 indicates that the image is not cropped.

+
+
+
+

Operator Input Requirements

The following two types of operator input are available:

+ +
+

Output Description

+ +
+
+
+ +
+ diff --git a/docs/modelarts/umn/dataprocess-modelarts-00004.html b/docs/modelarts/umn/dataprocess-modelarts-00004.html new file mode 100644 index 00000000..755e7093 --- /dev/null +++ b/docs/modelarts/umn/dataprocess-modelarts-00004.html @@ -0,0 +1,146 @@ + + +

Data Cleansing

+

PCC Operator Overview

ModelArts data cleansing is implemented by the PCC operator. The dataset used for image classification or object detection may contain images that do not belong to the required categories. These images need to be removed to avoid interference to labeling and model training.

+
+

Description

+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Table 1 Parameters of the PCC operator for data cleansing

Name

+

Mandatory

+

Default

+

Description

+

prototype_sample_path

+

Yes

+

None

+

Directory for storing positive data cleansing samples. The directory stores positive sample image files. The algorithm filters input data based on the positive sample images. That is, the data that is highly similar to the images in the prototype_sample_path directory is retained.

+

Enter an existing OBS directory. The directory contains the provided positive sample images and starts with obs://, for example, obs://obs_bucket_name/folder_name.

+

criticism_sample_path

+

No

+

None

+

Directory for storing negative data cleansing samples. The directory stores negative sample image files. The algorithm filters input data based on the negative sample images. That is, the data that is less similar to the images in the criticism_sample_path directory is retained.

+

It is recommended that this parameter be used together with prototype_sample_path to improve the accuracy of data cleansing.

+

Enter an existing OBS directory that starts with obs://, for example, obs://obs_bucket_name/folder_name.

+

n_clusters

+

No

+

auto

+

Number of data sample types. The default value is auto. You can enter an integer less than the total number of samples or auto. auto indicates that the number of images in the positive sample directory is used as the number of data sample types.

+

simlarity_threshold

+

No

+

0.9

+

Similarity threshold. If the similarity between two images exceeds the threshold, the two images are regarded as similar. Otherwise, they are regarded as dissimilar. The value ranges from 0 to 1.

+

embedding_distance

+

No

+

0.2

+

Distance between sample features. If the feature distance between two images is smaller than the specified value, the two images are regarded as similar. Otherwise, the two images are regarded as dissimilar. The value ranges from 0 to 1.

+

do_validation

+

No

+

True

+

Indicates whether to validate data. The value can be True or False. True indicates that data is validated before cleansing. False indicates that data is cleansed only.

+
+
+
+

Operator Input Requirements

The following two types of operator input are available:

+ +
+

Output Description

+ +
+
+
+ +
+ diff --git a/docs/modelarts/umn/dataprocess-modelarts-00005.html b/docs/modelarts/umn/dataprocess-modelarts-00005.html new file mode 100644 index 00000000..2caba3c1 --- /dev/null +++ b/docs/modelarts/umn/dataprocess-modelarts-00005.html @@ -0,0 +1,17 @@ + + +

Data Selection

+
+
+ + + +
+ diff --git a/docs/modelarts/umn/dataprocess-modelarts-00006.html b/docs/modelarts/umn/dataprocess-modelarts-00006.html new file mode 100644 index 00000000..33f55842 --- /dev/null +++ b/docs/modelarts/umn/dataprocess-modelarts-00006.html @@ -0,0 +1,106 @@ + + +

Data Deduplication

+

SimDeduplication Operator Overview

+
+

Operator Input Requirements

The following two types of operator input are available:

+ +
+

Output Description

+ +
+
+
+ +
+ diff --git a/docs/modelarts/umn/dataprocess-modelarts-00007.html b/docs/modelarts/umn/dataprocess-modelarts-00007.html new file mode 100644 index 00000000..e2e8292c --- /dev/null +++ b/docs/modelarts/umn/dataprocess-modelarts-00007.html @@ -0,0 +1,115 @@ + + +

Data Deredundancy

+

RRD Operator Overview

The data with the largest difference can be removed based on the preset proportion.

+ +
+ + + + + + + + + + + + + + + + + + + + + +
Table 1 Advanced parameters

Name

+

Mandatory

+

Default

+

Description

+

sample_ratio

+

No

+

0.9

+

Percentage of reserved data. The value ranges from 0 to 1. For example, 0.9 indicates that 90% of the original data is reserved.

+

n_clusters

+

auto

+

auto

+

Number of data sample types. The default value is auto, indicating that the total number of types is obtained based on the number of images in the directory. For example, you can specify the number of types to 4.

+

do_validation

+

No

+

True

+

Indicates whether to validate data. The value can be True or False. True indicates that data is validated before deredundancy. False indicates that data is deduplicated only.

+
+
+
+

Operator Input Requirements

The following two types of operator input are available:

+ +
+

Output Description

+ +
+
+
+ +
+ diff --git a/docs/modelarts/umn/dataprocess-modelarts-00008.html b/docs/modelarts/umn/dataprocess-modelarts-00008.html new file mode 100644 index 00000000..60978865 --- /dev/null +++ b/docs/modelarts/umn/dataprocess-modelarts-00008.html @@ -0,0 +1,19 @@ + + +

Data Augmentation

+
+
+ + + +
+ diff --git a/docs/modelarts/umn/dataprocess-modelarts-00009.html b/docs/modelarts/umn/dataprocess-modelarts-00009.html new file mode 100644 index 00000000..a37c4b68 --- /dev/null +++ b/docs/modelarts/umn/dataprocess-modelarts-00009.html @@ -0,0 +1,204 @@ + + +

Data Augmentation

+

Overview of Data Augmentation Operators

Data augmentation is mainly used in scenarios where training data is insufficient or simulation is required. You can transform a labeled dataset to increase the number of images for training and generate corresponding labels. In the deep learning field, augmentation is of great significance. It can improve model generalization and enhance anti-disturbance. Original data is not changed during data augmentation. A newly augmented image or XML file is saved in the specified output path.

+

ModelArts provides the following data augmentation operators:

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Table 1 Description of data augmentation operators

Operator

+

Description

+

Advanced

+

AddNoise

+

Adds noises to simulate the noises that may be generated when common capture devices capture images.

+
  • noise_type: type of noise added. Gauss indicates Gaussian noise. Laplace indicates Laplace noise. Poisson indicates Poisson noise. Impulse indicates impulse noise. SaltAndPepper indicates salt and pepper noise. The default value is Gauss.
  • loc: average noise distribution. This parameter is valid only in Gauss and Laplace. The default value is 0.
+
  • scale: standard deviation of noise distribution. This parameter is valid only in Gauss and Laplace. The default value is 1.
  • lam: lambda coefficient of Poisson distribution. This parameter is valid only in Poisson. The default value is 2.
+
  • p: probability of pulse noise or salt-and-pepper noise for each pixel. This parameter is valid only for Impulse and SaltAndPepper. The default value is 0.01.
  • do_validation: indicates whether to validate data before data augmentation. The default value is True.
+

Blur

+

Uses filters to filter images and sometimes to simulate imaging of imaging devices.

+
  • blur_type: The value can be Gauss or Average, which indicates Gaussian filtering and average filtering, respectively. The default value is Gauss.
  • do_validation: indicates whether to validate data before data augmentation. The default value is True.
+

Crop

+

Randomly crops a part of an image to generate a new image.

+
  • crop_percent_min: minimum value in the value range of the cropping ratio of each edge. The default value is 0.0.
  • crop_percent_max: maximum value in the value range of the cropping ratio of each edge. The default value is 0.2.
  • do_validation: indicates whether to validate data before data augmentation. The default value is True.
+

CutOut

+

Random erase, which is a common method used in deep learning to simulate an object that is blocked by an obstacle.

+

do_validation: indicates whether to validate data before data augmentation. The default value is True.

+

Flip

+

Flips along the horizontal or vertical axis of an image, which is a very common augmentation method.

+
  • lr_ud: flipping direction. lr indicates horizontal flipping, and ud indicates vertical flipping. The default value is lr.
  • flip_p: flipping probability. The default value is 1.
+
  • do_validation: indicates whether to validate data before data augmentation. The default value is True.
+

Grayscale

+

Changes a three-channel color image to a three-channel grayscale image.

+

do_validation: indicates whether to validate data before data augmentation. The default value is True.

+

HistogramEqual

+

Indicates the histogram equalization, which is mainly used to improve the visual effect of images. It is used in some scenarios.

+

do_validation: indicates whether to validate data before data augmentation. The default value is True.

+

LightArithmetic

+

Implements linear enhancement on luminance space.

+

do_validation: indicates whether to validate data before data augmentation. The default value is True.

+

LightContrast

+

Enhances luminance contrast. A certain non-linear function is used to change the luminance value of the luminance space.

+

func: The default value is gamma.

+
  • gamma: Gamma correction. Its formula is 255*((v/255)**gamma)').
  • sigmoid: S-shaped curve function. Its formula is 255*1/(1+exp(gain*(cutoff-I_ij/255)))').
  • log: logarithmic function. Its formula is 255*gain*log_2(1+v/255).
  • linear: linear function. Its formula is 127 + alpha*(v-127)').
+

do_validation: indicates whether to validate data before data augmentation. The default value is True.

+

MotionBlur

+

Indicates the motion blur generated when an object moves.

+

do_validation: indicates whether to validate data before data augmentation. The default value is True.

+

Padding

+

Pads an image with black edges.

+
  • px_top: number of pixel lines added at the top of the image. The default value is 1.
  • px_right: number of pixel lines added at the right of the image. The default value is 1.
  • px_left: number of pixel lines added at the left of the image. The default value is 1.
  • px_bottom: number of pixel lines added at the bottom of the image. The default value is 1.
  • do_validation: indicates whether to validate data before data augmentation. The default value is True.
+

Resize

+

Resizes an image.

+
  • height: height of the image after conversion. The default value is 224.
  • width: width of the image after conversion. The default value is 224.
  • do_validation: indicates whether to validate data before data augmentation. The default value is True.
+

Rotate

+

Rotates an image around the center point. After the operation is complete, the original shape of the image remains unchanged, and the blank part is filled with black.

+
  • angle_min: minimum value in the range of rotation angles. Each image randomly obtains a value from the range. The default value is 90°.
  • angle_max: maximum value in the range of rotation angles. Each image randomly obtains a value from the range. The default value is -90°.
  • do_validation: indicates whether to validate data before data augmentation. The default value is True.
+

Saturation

+

Enhances chrominance and saturation. The H and S spaces in the HSV of an image are changed linearly to change the chrominance and saturation of the image.

+

do_validation: indicates whether to validate data before data augmentation. The default value is True.

+

Scale

+

Zooms in or out an image. The length or width of an image is randomly zoomed in or out.

+
  • scaleXY: scaling direction. X indicates horizontal, and Y indicates vertical. The default value is X.
  • scale_min: lower limit of the random scaling ratio range. The default value is 0.5.
  • scale_max: upper limit of the random scaling ratio range. The default value is 1.5.
  • do_validation: indicates whether to validate data before data augmentation. The default value is True.
+

Sharpen

+

Indicates image sharpening, which is used to sharpen the edges of objects.

+

do_validation: indicates whether to validate data before data augmentation. The default value is True.

+

Shear

+

Indicates image shearing, which is used for geometric transformation of images. Pixels are mapped using linear functions.

+
  • shearXY: shearing direction. X indicates horizontal, and Y indicates vertical. The default value is X.
  • shear_min: lower limit of the random shearing angle range. The default value is -30.
  • shear_max: upper limit of the random shearing angle range. The default value is 30.
  • do_validation: indicates whether to validate data before data augmentation. The default value is True.
+

Translate

+

Moves an image along the x-axis or y-axis, discards the part that exceeds the original image, and fills the blank part with black.

+
  • translateXY: translation direction. X indicates horizontal, and Y indicates vertical. The default value is X.
  • do_validation: indicates whether to validate data before data augmentation. The default value is True.
+

Weather

+

Adds weather information to simulate the weather effect.

+

weather_mode: weather mode. The default value is Rain.

+
  • Rain: rain
  • Fog: fog
  • Snow: snow
  • Clouds: cloud
+

do_validation: indicates whether to validate data before data augmentation. The default value is True.

+
+
+
+

Operator Input Requirements

The following two types of operator input are available:

+ +
+

Output Description

Some data will be discarded due to some algorithm operations. Therefore, the output folder may not contain the full dataset. For example, Rotate will discard the images whose bounding boxes exceed the image boundaries.

+

The following shows the output directory structure. In this structure, the Data folder stores newly generated images and labeling information. The manifest file stores the structure of images in the folder and can be directly imported to the dataset in Data Management.

+
|----data_url
+    |----Data
+        |----xxx.jpg
+        |----xxx.xml(xxx.txt)
+    |----output.manifest
+

A manifest file example is as follows:

+
{
+	"id": "xss",
+	"source": "obs://home/fc8e2688015d4a1784dcbda44d840307_14.jpg",
+	"usage": "train", 
+	"annotation": [
+		{
+			"name": "Cat", 
+			"type": "modelarts/image_classification"
+		}
+	]
+}
+

+
+
+
+ +
+ diff --git a/docs/modelarts/umn/dataprocess-modelarts-00010.html b/docs/modelarts/umn/dataprocess-modelarts-00010.html new file mode 100644 index 00000000..aedf73bd --- /dev/null +++ b/docs/modelarts/umn/dataprocess-modelarts-00010.html @@ -0,0 +1,131 @@ + + +

Data Generation

+

Introduction to Data Generation

The image generation uses a generative adversarial network (GAN) to generate a new dataset with the existing dataset. A GAN is a network that contains a generator and discriminator. The generator randomly selects samples from a latent space as the input, and outputs results similar to the real samples in the training set. The discriminator distinguishes the outputs of the generative network from the real samples by inputting real samples or outputs of the generative network. The generative network's training objective is to increase the error rate of the discriminative network (that is, "fool" the discriminative network). The two networks contest with each other and continuously adjust parameters to achieve the final purpose, that is, make the discriminative network unable to distinguish whether the output of the generative network is true. The generative network obtained during training can be used to generate images similar to the input images, which can be used as new datasets for training. New datasets generated based on GANs have no labels. Original data is not changed during image generation. The newly generated image or XML file is saved in the specified output path.

+
+

StyleGAN Operator Overview

StyleGAN operator randomly generates similar images based on StyleGAN2 when a dataset is small. StyleGAN has a new generator architecture that can control the high-level attributes such as hairstyle and freckles of the generated images. These generated images perform even better in certain aspects. In addition, StyleGAN is equipped with the data augmentation algorithm, which can generate new satisfactory samples even with a small number of samples. However, there must be at least 70 samples to have rich image styles.

+
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Table 1 Advanced parameters of the StyleGAN operator

Name

+

Default

+

Description

+

resolution

+

256

+

Height and width of the generated square image. The value must be 2 to the power of n.

+

batch-size

+

8

+

Number of samples for batch training

+

total-kimg

+

300

+

The total number of trained images is obtained by multiplying this parameter value by 1,000.

+

generate_num

+

300

+

Number of generated images. If the generated images have multiple classes, the value is the number of generated images of each class.

+

predict

+

False

+

Whether to perform inference and prediction. The default value is False. If this parameter is set to True, you need to set resume to the OBS path where the trained model is stored.

+

resume

+

empty

+

If predict is set to True, enter the OBS path where the TensorFlow model file is stored for inference and prediction. Currently, only models in .pb format are supported. Example: obs://xxx/xxxx.pb.

+

The default value is empty.

+

do_validation

+

True

+

Whether to validate data. The default value is True, which indicates that data is validated before being generated. False indicates data is generated directly.

+
+
+

Data Input

The following two types of operator input are available:

+ +

The single-level directory structure is as follows:

+
image_folder----0001.jpg           
+            ----0002.jpg            
+            ----0003.jpg            
+            ...            
+            ----1000.jpg
+

The dual-level directory structure is as follows:

+
image_folder----sub_folder_1----0001.jpg                            
+                            ----0002.jpg                            
+                            ----0003.jpg                            
+                            ...                            
+                            ----0500.jpg            
+            ----sub_folder_2----0001.jpg                            
+                            ----0002.jpg                           
+                            ----0003.jpg                            
+                            ...                            
+                            ----0500.jpg
+                            ...            
+            ----sub_folder_100----0001.jpg                            
+                              ----0002.jpg                            
+                              ----0003.jpg                            
+                              ...                            
+                              ----0500.jpg
+

+
+

Output Description

The output directory structure is as follows: The folder model stores model frozen PB for inference, the folder samples stores the output images during training, and the folder Data stores the images generated by the training model.

+
train_url----model----CYcleGan_epoch_10.pb                  
+                  ----CYcleGan_epoch_20.pb                  
+                  ...                 
+                  ----CYcleGan_epoch_1000.pb         
+         ----samples----0000_0.jpg                   
+                   ----0000_1.jpg                  
+                   ...                   
+                   ----0100_15.jpg         
+         ----Data----CYcleGan_0_0.jpg                 
+                 ----CYcleGan_0_1.jpg                 
+                 ...                 
+                 ----CYcleGan_16_8.jpg         
+         ----output_0.manifest
+

A manifest file example is as follows:

+
{
+	"id": "xss",
+	"source": "obs://home/fc8e2688015d4a1784dcbda44d840307_14.jpg",
+	"usage": "train", 
+	"annotation": [
+		{
+			"name": "Cat", 
+			"type": "modelarts/image_classification"
+		}
+	]
+}
+
+

+
+
+ +
+ diff --git a/docs/modelarts/umn/dataprocess-modelarts-00011.html b/docs/modelarts/umn/dataprocess-modelarts-00011.html new file mode 100644 index 00000000..82036baa --- /dev/null +++ b/docs/modelarts/umn/dataprocess-modelarts-00011.html @@ -0,0 +1,165 @@ + + +

Data Transfer Between Domains

+

CycleGAN Operator Overview

CycleGAN operator generates images for domain transfer based on CycleGAN, that is, converts one type of images into another, or converts samples in the X space into samples in the Y space. CycleGAN can use non-paired data for training. During model training, two inputs are supported, indicating the source domain and target domain of data, respectively. After the training is complete, all images transferred from the source domain to the target domain are generated.

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Table 1 Advanced parameters of the CycleGAN operator

Name

+

Default

+

Description

+

do_validation

+

True

+

Whether to validate data. The default value is True, which indicates that data is validated before being generated. False indicates data is generated directly.

+

image_channel

+

3

+

Number of channels of the image

+

image_height

+

256

+

Image height. The value must be 2 to the power of n.

+

image_width

+

256

+

Image width. The value must be 2 to the power of n.

+

batch_size

+

1

+

Number of samples for batch training

+

max_epoch

+

100

+

Number of dataset epochs during training

+

g_learning_rate

+

0.0001

+

Learning rate for the generator training

+

d_learning_rate

+

0.0001

+

Learning rate for the discriminator training

+

log_frequency

+

5

+

Logging frequency (counted by step)

+

save_frequency

+

5

+

Model save frequency (counted by epoch)

+

predict

+

False

+

Whether to perform inference and prediction. The default value is False. If this parameter is set to True, you need to set resume to the OBS path where the trained model is stored.

+

resume

+

empty

+

If predict is set to True, enter the OBS path where the TensorFlow model file is stored for inference and prediction. Currently, only models in .pb format are supported. Example: obs://xxx/xxxx.pb.

+

The default value is empty.

+
+
+
+

Data Input

The following two types of operator input are available:

+ +

The single-level directory structure is as follows:

+
image_folder----0001.jpg           
+            ----0002.jpg            
+            ----0003.jpg            
+            ...            
+            ----1000.jpg
+

The dual-level directory structure is as follows:

+
image_folder----sub_folder_1----0001.jpg                            
+                            ----0002.jpg                            
+                            ----0003.jpg                            
+                            ...                            
+                            ----0500.jpg            
+            ----sub_folder_2----0001.jpg                            
+                            ----0002.jpg                           
+                            ----0003.jpg                            
+                            ...                            
+                            ----0500.jpg
+                            ...            
+            ----sub_folder_100----0001.jpg                            
+                              ----0002.jpg                            
+                              ----0003.jpg                            
+                              ...                            
+                              ----0500.jpg
+

+
+

Output Description

The output directory structure is as follows: The folder model stores model frozen PB for inference, the folder samples stores the output images during training, and the folder Data stores the images generated by the training model.

+
train_url----model----CYcleGan_epoch_10.pb                  
+                  ----CYcleGan_epoch_20.pb                  
+                  ...                 
+                  ----CYcleGan_epoch_1000.pb         
+         ----samples----0000_0.jpg                   
+                   ----0000_1.jpg                  
+                   ...                   
+                   ----0100_15.jpg         
+         ----Data----CYcleGan_0_0.jpg                 
+                 ----CYcleGan_0_1.jpg                 
+                 ...                 
+                 ----CYcleGan_16_8.jpg         
+         ----output_0.manifest
+

A manifest file example is as follows:

+
{
+	"id": "xss",
+	"source": "obs://home/fc8e2688015d4a1784dcbda44d840307_14.jpg",
+	"usage": "train", 
+	"annotation": [
+		{
+			"name": "Cat", 
+			"type": "modelarts/image_classification"
+		}
+	]
+}
+
+

+

+
+
+ +
+ diff --git a/docs/modelarts/umn/develop-modelarts-0001.html b/docs/modelarts/umn/develop-modelarts-0001.html new file mode 100644 index 00000000..41e3e67d --- /dev/null +++ b/docs/modelarts/umn/develop-modelarts-0001.html @@ -0,0 +1,25 @@ + + +

Introduction to Model Development

+

AI modeling involves two stages:

+ +

In the two stages, code is designed, developed, and tested in repeated cycles. In the development stage, when the code becomes stable, the modeling process enters the experiment stage, during which hyperparameters are continuously optimized to iterate the model. In the experiment stage, when the training performance can be optimized, the modeling process returns to the development stage for optimizing code.

+

The following is part of the process for AI modeling.

+

+

ModelArts provides model training, which allows you to review training results and tune model parameters based on the training results. You can select resource pools with different specifications for model training.

+

To train a model on ModelArts, follow these steps:

+ +
+
+ +
+ + + \ No newline at end of file diff --git a/docs/modelarts/umn/develop-modelarts-0002.html b/docs/modelarts/umn/develop-modelarts-0002.html new file mode 100644 index 00000000..4d39b24b --- /dev/null +++ b/docs/modelarts/umn/develop-modelarts-0002.html @@ -0,0 +1,30 @@ + + +

Preparing Data

+

ModelArts uses OBS to store data, and backs up and takes snapshots for models, achieving secure, reliable storage at low costs.

+ +

OBS

OBS provides stable, secure, and efficient cloud storage service that lets you store virtually any volume of unstructured data in any format. Bucket and objects are basic concepts in OBS. A bucket is a container for storing objects in OBS. Each bucket is specific to a region and has specific storage class and access permissions. A bucket is accessible through its domain name over the Internet. An object is the basic unit of data storage in OBS.

+

OBS is a data storage center for ModelArts. All the input data, output data, and cache data during AI development can be stored in OBS buckets for reading.

+

Before using ModelArts, create an OBS bucket and folders for storing data.

+
+
Figure 1 OBS
+

Obtaining Training Data

Use either of the following methods to obtain ModelArts training data:

+ +
Figure 2 Preparing data
+
+
+
+ +
+ + + \ No newline at end of file diff --git a/docs/modelarts/umn/develop-modelarts-0003.html b/docs/modelarts/umn/develop-modelarts-0003.html new file mode 100644 index 00000000..989feead --- /dev/null +++ b/docs/modelarts/umn/develop-modelarts-0003.html @@ -0,0 +1,22 @@ + + + +

Preparing Algorithms

+ +
+ +
+ + + +
+ diff --git a/docs/modelarts/umn/develop-modelarts-0004.html b/docs/modelarts/umn/develop-modelarts-0004.html new file mode 100644 index 00000000..46a8bf23 --- /dev/null +++ b/docs/modelarts/umn/develop-modelarts-0004.html @@ -0,0 +1,21 @@ + + +

Introduction to Algorithm Preparation

+

Machine learning explores general rules from limited volume of data and uses these rules to predict unknown data. To obtain more accurate prediction results, select a proper algorithm to train your model. ModelArts provides a large number of algorithm samples for different scenarios. This section describes algorithm sources and learning modes.

+

Algorithm Sources

You can use one of the following methods to build a ModelArts model:

+ +
+

Algorithm Learning Modes

ModelArts allows you to train models in different modes as required.

+ +
+
+
+ +
+ diff --git a/docs/modelarts/umn/develop-modelarts-0006.html b/docs/modelarts/umn/develop-modelarts-0006.html new file mode 100644 index 00000000..7662466b --- /dev/null +++ b/docs/modelarts/umn/develop-modelarts-0006.html @@ -0,0 +1,19 @@ + + +

Using a Preset Image (Custom Script)

+
+
+ + + +
+ diff --git a/docs/modelarts/umn/develop-modelarts-0007.html b/docs/modelarts/umn/develop-modelarts-0007.html new file mode 100644 index 00000000..5f1fa31c --- /dev/null +++ b/docs/modelarts/umn/develop-modelarts-0007.html @@ -0,0 +1,75 @@ + + +

Overview

+

If the subscribed algorithms cannot meet your requirements or you want to migrate local algorithms to ModelArts for training, use the ModelArts preset images to create algorithms. This method is also called using a preset image.

+

This section describes how to use a preset image to create an algorithm.

+ +

Built-in Training Engines

The following table lists the training engines and their versions supported by ModelArts.

+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Table 1 AI engines supported by training jobs of the new version

Runtime Environment

+

Supported Chip

+

System Architecture

+

System Version

+

AI Engine and Version

+

Supported CUDA or Ascend Version

+

Ascend-Powered-Engine

+

Ascend910

+

aarch64

+

Euler2.8

+

mindspore_2.0.0-cann_6.3.0-py_3.7-euler_2.8.3-aarch64

+

cann_6.3.0

+

PyTorch

+

+

Ascend910

+

aarch64

+

Euler2.8

+

pytorch_1.11.0-cann_6.3.0-py_3.7-euler_2.8.3-aarch64

+

cann_6.3.0

+

TensorFlow

+

+

+

Ascend910

+

aarch64

+

Euler2.8

+

tensorflow_1.15.0-cann_6.3.0-py_3.7-euler_2.8.3-aarch64

+

cann_6.3.0

+
+
+
+
+
+ +
+ diff --git a/docs/modelarts/umn/develop-modelarts-0008.html b/docs/modelarts/umn/develop-modelarts-0008.html new file mode 100644 index 00000000..91768858 --- /dev/null +++ b/docs/modelarts/umn/develop-modelarts-0008.html @@ -0,0 +1,109 @@ + + +

Developing a Custom Script

+

Before you use a preset image to create an algorithm, develop the algorithm code. This section describes how to modify local code for model training on ModelArts.

+

When creating an algorithm, set the code directory, boot file, input path, and output path. These settings enable the interaction between your code and ModelArts.

+ +

The following section describes how to develop training code in ModelArts.

+

(Optional) Introducing Dependencies

  1. If your model references other dependencies, place the required file or installation package in Code Directory you set during algorithm creation.
    • For details about how to install the Python dependency package, see "How Do I Create a Training Job When a Dependency Package Is Referenced by the Model to Be Trained?" in FAQs.
    • For details about how to install a C++ dependency library, see "How Do I Install a Library That C++ Depends on?" in FAQs.
    • For details about how to load parameters to a pre-trained model, see "How Do I Load Some Well Trained Parameters During Job Training?" in FAQs.
    +
+
+

Parsing Input and Output Paths

To enable a ModelArts model reads data stored in OBS or outputs data to a specified OBS path, follow these steps to configure the input and output data:

+
  1. Parse the input and output paths in the training code. The following method is recommended:
     1
    + 2
    + 3
    + 4
    + 5
    + 6
    + 7
    + 8
    + 9
    +10
    import argparse
    +# Create a parsing task.
    +parser = argparse.ArgumentParser(description="train mnist",
    +                                 formatter_class=argparse.ArgumentDefaultsHelpFormatter)
    +# Add parameters.
    +parser.add_argument('--train_url', type=str, 
    +                    help='the path model saved')
    +parser.add_argument('--data_url', type=str, help='the training data')
    +# Parse the parameters.
    +args, unkown = parser.parse_known_args()
    +
    + +
    +

    After the parameters are parsed, use data_url and train_url to replace the paths to the data source and the data output, respectively.

    +
  2. When using a custom script to create an algorithm, configure the input and output parameters on the algorithm creation page based on code settings.
    • Training data is a must for algorithm development. By default, the input data is Data Source and the code path parameter is data_url (customizable).
      Figure 1 Parsing the input path parameter data_url
      +
    +
    • After model training is complete, the trained model and the output data must be stored in an OBS path. By default, the output data is Output Data and the code path parameter is train_url (customizable).
      Figure 2 Parsing the output path parameter train_url
      +
    +

    +
  3. When creating a training job, configure the input and output paths.

    Select an OBS path or dataset path as the training input, and an OBS path for the output.

    +
+
+

Editing Training Code and Saving the Model

Training code and the code for saving the model are closely related to the AI engine you use. The following uses the TensorFlow framework as an example. Before starting this case study, you must download the mnist.npz file and upload it to the OBS bucket. The training input is the OBS path where the mnist.npz file is stored.

+
import os
+import argparse
+import tensorflow as tf
+
+parser = argparse.ArgumentParser(description='train mnist')
+parser.add_argument('--data_url', type=str, default="./Data/mnist.npz", help='path where the dataset is saved')
+parser.add_argument('--train_url', type=str, default="./Model", help='path where the model is saved')
+args = parser.parse_args()
+
+mnist = tf.keras.datasets.mnist
+
+(x_train, y_train), (x_test, y_test) = mnist.load_data(args.data_url)
+x_train, x_test = x_train / 255.0, x_test / 255.0
+
+model = tf.keras.models.Sequential([
+    tf.keras.layers.Flatten(input_shape=(28, 28)),
+    tf.keras.layers.Dense(128, activation='relu'),
+    tf.keras.layers.Dropout(0.2),
+    tf.keras.layers.Dense(10)
+])
+
+loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
+model.compile(optimizer='adam',
+              loss=loss_fn,
+              metrics=['accuracy'])
+model.fit(x_train, y_train, epochs=5)
+
+model.save(os.path.join(args.train_url, 'model'))
+

+
+

Differences in Training Code Adaptation

In the old version, you are required to configure data input and output as follows:

+
# Parse CLI parameters.
+import argparse
+parser = argparse.ArgumentParser(description='MindSpore Lenet Example')
+parser.add_argument('--data_url', type=str, default="./Data",
+                    help='path where the dataset is saved')
+parser.add_argument('--train_url', type=str, default="./Model", help='if is test, must provide\
+                    path where the trained ckpt file')
+args = parser.parse_args()
+...
+# Download data to your local container. In the code, local_data_path specifies the training input path.
+mox.file.copy_parallel(args.data_url, local_data_path)
+...
+# Upload the local container data to the OBS path.
+mox.file.copy_parallel(local_output_path, args.train_url)
+
+
+
+ +
+ + + \ No newline at end of file diff --git a/docs/modelarts/umn/develop-modelarts-0009.html b/docs/modelarts/umn/develop-modelarts-0009.html new file mode 100644 index 00000000..c433cab6 --- /dev/null +++ b/docs/modelarts/umn/develop-modelarts-0009.html @@ -0,0 +1,194 @@ + + +

Creating an Algorithm

+

Your locally developed algorithms or algorithms developed using other tools can be uploaded to ModelArts for unified management. Note the following when creating a custom algorithm:

+
  1. Prerequisites
  2. Accessing the Algorithm Creation Page
  3. Setting Basic Information
  4. Setting the Boot Mode
  5. Configuring Pipelines
  6. Defining Hyperparameters
  7. Supported Policies
  8. Adding Training Constraints
  9. Follow-Up Operations
+

Prerequisites

+
+

Accessing the Algorithm Creation Page

  1. Log in to the ModelArts console and choose Algorithm Management in the navigation pane on the left.
  2. On the My algorithm page, click Create. The Create Algorithm page is displayed.
+
+

Setting Basic Information

Enter basic information, including Name and Description.

+
Figure 1 Setting basic information
+
+

Setting the Boot Mode

Select a preset image to create an algorithm.

+
Set Image, Code Directory, and Boot File based on the algorithm code. Ensure that the framework of the AI image you select is the same as the one you use for editing algorithm code. For example, if TensorFlow is used for editing algorithm code, select a TensorFlow image when you create an algorithm. +
+ + + + + + + + + + + + + +
Table 1 Parameters

Parameter

+

Description

+

Boot Mode > Preset image

+

AI images supported by the new-version training are displayed by default. For details, see Overview.

+

Code Directory

+

OBS path for storing the algorithm code. The files required for training, such as the training code, dependence installation packages, and pre-generated models, are uploaded to the code directory.

+

The code directory cannot contain files and directories uploaded by others or irrelevant files or directories. Otherwise, uploading data may fail.

+

Do not store training data in the code directory. When the training job starts, the data stored in the code directory will be downloaded to the backend. A large amount of training data may lead to a download failure.

+

After you create the training job, ModelArts downloads the code directory and its subdirectories to the training container.

+

Take OBS path obs://obs-bucket/training-test/demo-code as an example. The content in the OBS path will be automatically downloaded to ${MA_JOB_DIR}/demo-code in the training container, and demo-code (customizable) is the last-level directory of the OBS path.

+
NOTE:
  • Any programming language is supported.
  • The total number of both files and folders cannot exceed 1,000.
  • The total file size cannot exceed 5 GB.
+
+

Boot File

+

The file must be stored in the code directory and end with .py. ModelArts supports boot files edited only in Python.

+

The boot file in the code directory is used to start a training job.

+
+
+
Figure 2 Using a custom script to create an algorithm
+
+
+

Configuring Pipelines

A preset image-based algorithm obtains data from an OBS bucket or dataset for model training. The training output is stored in an OBS bucket. The input and output parameters in your algorithm code must be parsed to enable data exchange between ModelArts and OBS. For details about how to develop code for training on ModelArts, see Developing a Custom Script.

+

When you use a preset image to create an algorithm, configure the input and output parameters defined in the algorithm code.

+ +
+

Defining Hyperparameters

When you use a preset image to create an algorithm on ModelArts, you can customize hyperparameters so you can review or modify them anytime. Defined hyperparameters are displayed in the boot command and passed to your boot file as CLI parameters.

+
  1. Import hyperparameters.

    You can click Add hyperparameter to manually add hyperparameters.

    +

    +
  2. Edit hyperparameters. For details, see Table 4. +
    + + + + + + + + + + + + + + + + + + + + + + +
    Table 4 Hyperparameter parameters

    Parameter

    +

    Description

    +

    Name

    +

    Enter the hyperparameter name.

    +

    Enter 1 to 64 characters. Only letters, digits, hyphens (-), and underscores (_) are allowed.

    +

    Type

    +

    Select the data type of the hyperparameter. The value can be String, Integer, Float, or Boolean

    +

    Default

    +

    Set the default value of the hyperparameter. This value will be used for training jobs by default.

    +

    Restrain

    +

    Click Restrain and set the range of the default value or enumerated value in the dialog box displayed.

    +

    Required

    +

    Whether the hyperparameter is mandatory. The value can be Yes or No. If you select No, you can delete the hyperparameter on the training job creation page when using this algorithm to create a training job. If you select Yes, the hyperparameter cannot be deleted.

    +

    Description

    +

    Enter the description of the hyperparameter.

    +

    Only letters, digits, spaces, hyphens (-), underscores (_), commas (,), and periods (.) are allowed.

    +
    +
    +
+
+

Supported Policies

Only the pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 and tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64 images are available for auto search.

+
+

Adding Training Constraints

You can add training constraints of the algorithm based on your needs.

+ +
+

Previewing the Runtime Environment

When creating an algorithm, click the arrow on in the lower right corner of the page to know the paths of the code directory, boot file, and input and output data in the training container.

+
Figure 4 Preview Runtime Environment
+
+

Follow-Up Operations

After an algorithm is created, use it to create a training job. For details, see Creating a Training Job.

+
+
+
+ +
+ + + \ No newline at end of file diff --git a/docs/modelarts/umn/develop-modelarts-0010.html b/docs/modelarts/umn/develop-modelarts-0010.html new file mode 100644 index 00000000..aff6f335 --- /dev/null +++ b/docs/modelarts/umn/develop-modelarts-0010.html @@ -0,0 +1,32 @@ + + +

Performing a Training

+

+
+
+ + + +
+ diff --git a/docs/modelarts/umn/develop-modelarts-0011.html b/docs/modelarts/umn/develop-modelarts-0011.html new file mode 100644 index 00000000..58c5862d --- /dev/null +++ b/docs/modelarts/umn/develop-modelarts-0011.html @@ -0,0 +1,270 @@ + + +

Creating a Training Job

+

ModelArts training management enables you to create training jobs, view training statuses, and manage job versions. Model training is an iterative optimization process. Through unified training management, you can flexibly select algorithms, data, and hyperparameters to obtain the optimal input configuration and model. After comparing metrics between training versions, you can determine the most satisfactory training job.

+

Prerequisites

+
+

Creating a Training Job

  1. Log in to the ModelArts management console.
  2. In the navigation pane, choose Training Management > Training Jobs. The training job list is displayed.
  3. Click Create Training Job. Then, configure parameters. +
    + + + + + + + + + + +
    Table 1 Parameters of a training job

    Parameter

    +

    Description

    +

    Name

    +

    Name of a training job.

    +

    The system automatically generates a name. You can rename it based on the following naming rules:

    +
    • The name contains 1 to 64 characters.
    • Letters, digits, hyphens (-), and underscores (_) are allowed.
    +

    Description

    +

    Description of a training job.

    +
    +
    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + +
    Table 2 Algorithm parameters of a training job

    Parameter

    +

    Sub-Parameter

    +

    Description

    +

    Algorithm Type > Custom algorithm > Boot Mode

    +

    Preset image

    +

    If Boot Mode is set to Preset image, select a preset engine and configure the code directory and boot file.

    +
    • Code Directory: Select the code directory required for this training job. Upload code to the OBS bucket in advance. The total size of files in the directory cannot exceed 5 GB, the number of files cannot exceed 1,000, and the folder depth cannot exceed 32.
    • Boot File: Select the Python boot script in the code directory. The boot file must a .py file because ModelArts supports only boot files written in Python.
    +

    Algorithm Type > Custom algorithm > Boot Mode

    +

    Custom image

    +

    If Boot Mode is set to Custom image, specify the image, code directory, and boot command.

    +
    • Code Directory: Select the code directory required for this training job. This parameter is optional.

      Take OBS path obs://obs-bucket/training-test/demo-code as an example. The content in the OBS path will be automatically downloaded to ${MA_JOB_DIR}/demo-code in the training container, and demo-code (customizable) is the last-level directory of the OBS path.

      +
    • Boot Command: Enter the image boot command. This parameter is mandatory. The boot command will be automatically executed after the code directory is downloaded.
      • If the training boot script is a .py file, train.py for example, the boot command can be python ${MA_JOB_DIR}/demo-code/train.py.
      • If the training boot script is an .sh file, main.sh for example, the boot command can be bash ${MA_JOB_DIR}/demo-code/main.sh.
      +

      Semicolons (;) and ampersands (&&) can be used to combine multiple boot commands, but line breaks are not supported. demo-code (customizable) in the boot command is the last-level directory of the OBS path.

      +
    +

    Algorithm Type > Custom algorithm

    +

    Local Code Directory

    +

    You can specify the local directory of a training container. When a training starts, the system automatically downloads the code directory to this directory.

    +

    The default local code directory is /home/ma-user/modelarts/user-job-dir. This parameter is optional.

    +

    Algorithm Type > Custom algorithm

    +

    Work Directory

    +

    Set the directory where the boot file in the training container is located. When a training job starts, the system automatically runs the cd command to change the work directory to the specified directory.

    +

    Created By

    +

    My algorithms

    +

    Select an algorithm or create an algorithm. For details, see Creating an Algorithm.

    +
    +
    + +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Table 3 Parameters of training input and output

    Parameter

    +

    Sub-Parameter

    +

    Description

    +

    Input

    +

    +

    Name

    +

    The recommended value is data_url. The training input must match the data input configuration set in your selected algorithm. For details, see Table 2.

    +

    For example, if you use argparse in the training code to parse data_url into the data input, set the data input parameter to data_url when creating the algorithm.

    +

    You can select a dataset or data path for data input. When the training job is started, ModelArts automatically downloads the data in the input path to the container directory for training.

    +

    Dataset

    +

    Select an available dataset and its version from the ModelArts Data Management module.

    +

    Click Dataset and select the target dataset and its version in the dialog box displayed.

    +
    NOTE:

    If Dataset is unavailable, the training data of the selected algorithm cannot be from a dataset.

    +
    +

    Data path

    +

    Select the training data from your OBS bucket.

    +

    Click Data path and select the OBS bucket and folder in the dialog box displayed.

    +
    NOTE:

    If Data path is unavailable, the training data of the selected algorithm cannot be from a data path.

    +
    +

    Obtained from

    +

    The following uses training input data_path as an example.

    +

    If you select Hyperparameters, do as follows to obtain the training input:

    +
    import argparse
    +parser = argparse.ArgumentParser()
    +parser.add_argument('--data_path')
    +args, unknown = parser.parse_known_args()
    +data_path = args.data_path 
    +

    If you select Environment variables, do as follows to obtain the training input:

    +
    import os
    +data_path = os.getenv("data_path", "")
    +

    Output

    +

    Name

    +

    The algorithm code reads the local path to the training output based on this parameter.

    +

    The recommended value is train_url. The training output must match the data output configuration set in your selected algorithm. For details, see Table 3.

    +

    For example, if you use argparse in the algorithm code to parse train_url into the data output, set the data output parameter to train_url when creating the algorithm.

    +

    You can select an OBS path for data output. During training, ModelArts automatically uploads the training output to the OBS path.

    +

    Data path

    +

    This data path stores the training output. During and after the training, the system automatically synchronizes files from the local directory to the data path. Currently, only OBS paths can be set as the data path.

    +

    Select the storage path of the training result (OBS path). To minimize errors, select an empty directory.

    +

    Obtained from

    +

    The following uses the training output train_url as an example.

    +

    Obtain the training output from hyperparameters by using the following code:

    +
    import argparse
    +parser = argparse.ArgumentParser()
    +parser.add_argument('--train_url')
    +args, unknown = parser.parse_known_args()
    +train_url = args.train_url 
    +

    Obtain the training output from environment variables by using the following code:

    +
    import os
    +train_url = os.getenv("train_url", "")
    +

    Predownload

    +

    If you set Predownload to Yes, the system automatically downloads the files in the training output data path to a local directory of the training container before the training job is started. Select Yes for resumable training and incremental training.

    +

    Hyperparameters

    +

    None

    +

    The value of this parameter varies according to the selected algorithm.

    +

    If you have defined hyperparameters when creating an algorithm, all hyperparameters of the algorithm are displayed. Whether hyperparameters can be modified or deleted depends on how you configure the constraints when creating the algorithm. For details, see Defining Hyperparameters.

    +

    Environment Variable

    +

    None

    +

    Environment variables, which you can add as required. For details about the environment variables preset in the training container, see Viewing Environment Variables of a Training Container.

    +

    Auto Restart

    +

    None

    +

    Number of retries for a failed training job. If this parameter is enabled, a failed training job will be automatically re-delivered and run. On the training job details page, you can view the number of retries for a failed training job.

    +
    • This function is disabled by default.
    • If you enable this function, set the number of retries. The value ranges from 1 to 3 and cannot be changed.
    +
    +
    +

    The training input, training output, and hyperparameters vary according to the selected algorithm.

    +

    If the system displays a message for Training Input, indicating there is no input channel for the selected algorithm, you do not need to set data input on this page.

    +

    If the system displays a message for Training Output, indicating there is no output channel for the selected algorithm, you do not need to set data output on this page.

    +

    If the system displays a message for Hyperparameters, indicating the selected algorithm does not support custom hyperparameters, you do not need to set hyperparameters on this page.

    +
    +
  4. Select an instance flavor. The value range of the training parameters is consistent with the constraints of existing algorithms. +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Table 4 Resource parameters

    Parameter

    +

    Description

    +

    Resource Pool

    +

    Select resource pools for the job. Public and dedicated resource pools are available for you to select.

    +

    If you select a dedicated resource pool, you can view details about the pool. If the number of available cards of this pool is insufficient, jobs may need to be queued. In this case, use another resource pool or reduce the number of cards required.

    +
    NOTE:

    Dedicated resource pools can be accessed to your VPCs and subnets. For details, see (Optional) Interconnecting a VPC with a ModelArts Network.

    +

    If you want to change the VPC accessible to your dedicated resource pool, see (Optional) Interconnecting a VPC with a ModelArts Network.

    +
    +

    Resource Type

    +

    Select CPU or GPU as needed. Set this parameter based on the resource type specified in your training code.

    +

    Instance Flavor

    +

    Select a resource flavor based on the resource type. If the type of resources to be used has been specified in your training code, only the options that comply with the constraints of the selected algorithm are available for you to choose. For example, if GPU is selected in the training code but you select CPU here, the training may fail.

    +

    During training, ModelArts will mount NVME SSDs to the /cache directory. You can use this directory to store temporary files. The data disk size varies depending on the resource type. To prevent insufficient memory during training, click Check Input Size to check whether the disk size of selected instance flavor is sufficient for the input size.

    +

    Compute Nodes

    +

    Set the number of compute nodes. The default value is 1.

    +

    Job Priority

    +

    When using a new-version dedicated resource pool, you can set the priority of a training job. The value ranges from 1 to 3. The default priority is 1, and the highest priority is 3. By default, the job priority can be set to 1 or 2. After the permission to set the highest job priority is configured, the priority can be set to 1 to 3.

    +

    You can change the priority of a pending job.

    +

    SFS Turbo

    +

    When a dedicated resource pool is used for training, multiple SFS Turbo file systems can be mounted for one training job.

    +
    • Name: SFS Turbo name
    • Server Path: SFS Turbo directory
    • Local Path: mounting path of the SFS Turbo directory in the training job
    +

    A file system can be mounted only once and to only one path. Each mount path must be unique. A maximum of 8 disks can be mounted to a training job.

    +
    NOTE:
    • Before mounting an SFS Turbo file system to a training job, configure the VPC and subnet where SFS Turbo is deployed to be accessible in the dedicated resource pool. For details, see .
    • The mounting path cannot be a / directory or a default mounting path, such as /cache and /home/ma-user/modelarts.
    +
    +

    Persistent Log Saving

    +

    If you select CPU or GPU flavors, Persistent Log Saving is available for you to set.

    +

    This function is disabled by default. ModelArts automatically stores the logs for 30 days. You can download all logs on the job details page.

    +

    After this function is enabled, select an empty OBS path for storing training logs. Ensure that you have read and write permissions to the selected OBS directory.

    +

    Auto Stop

    +
    • After this parameter is enabled and the auto stop time is set, a training job automatically stops at the specified time.
    • If this function is disabled, a training job will continue to run.
    • The options are 1hour, 2hours, 4hours, 6hours, and Customization (1 hour to 72 hours).
    +

    +
    +
    +
  1. Click Submit to create the training job.

    A training job generally runs for a period of time. To view the real-time status and basic information of a training job, switch to the training job list.

    +
    • In the training job list, Status of the newly created training job is Pending.
    • When the status of a training job changes to Completed, the training job is complete, and the generated model is stored in the corresponding training output path.
    • If the status is Failed or Abnormal, click the job name to go to the job details page and view logs for troubleshooting. For details, see Training Job Details.
    +
+
+
+
+ +
+ diff --git a/docs/modelarts/umn/develop-modelarts-0013.html b/docs/modelarts/umn/develop-modelarts-0013.html new file mode 100644 index 00000000..79ee1750 --- /dev/null +++ b/docs/modelarts/umn/develop-modelarts-0013.html @@ -0,0 +1,143 @@ + + +

Viewing Training Job Details

+
  1. Log in to the ModelArts management console.
  2. In the navigation pane on the left, choose Training Management > Training Jobs.
  3. In the training job list, click a job name to switch to the training job details page.
  4. On the left of the training job details page, view basic job settings and algorithm parameters.
    1. Basic job settings +
      + + + + + + + + + + + + + + + + + + + +
      Table 1 Basic job settings

      Parameter

      +

      Description

      +

      Job ID

      +

      Unique ID of a training job

      +

      Status

      +

      Training job status

      +

      Created

      +

      Time when the training job is created

      +

      Duration

      +

      Running duration of a training job

      +

      Description

      +

      Description of a training job.

      +

      You can click the edit icon to update the description of a training job.

      +
      +
      +
    2. Algorithm parameters +
      + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
      Table 2 Algorithm parameters

      Parameter

      +

      Description

      +

      Algorithm Name

      +

      Algorithm used in a training job You can click the algorithm name to go to the algorithm details page.

      +

      Preset images

      +

      Preset image used by a training job

      +

      Code Directory

      +

      OBS path to the code directory of a training job

      +

      You can click Edit Code on the right to edit the training script code in OBS Online Editor. OBS Online Editor is not available for a training job in the Pending, Creating, or Running status.

      +
      NOTE:

      If you use the algorithm subscribed in AI Hub to create a training job, then this parameter is not supported.

      +
      +

      Boot File

      +

      Location where a boot file is stored.

      +
      NOTE:

      If you use the algorithm subscribed in AI Hub to create a training job, then this parameter is not supported.

      +
      +

      Local Code Directory

      +

      Path to the training code in the training container

      +

      Work Directory

      +

      Path to the training startup file in the training container

      +

      Compute Nodes

      +

      Number of compute nodes

      +

      Specifications

      +

      Training specifications used in a training job

      +

      Input Path

      +

      OBS path where the input data is stored

      +

      Parameter Name

      +

      Algorithm code parameter specified by the input path

      +

      Local Path (Training Parameter Value)

      +

      Path for storing the input data in the ModelArts backend container. After the training is started, ModelArts downloads the data stored in OBS to the backend container.

      +

      Output Path

      +

      OBS path where the output data is stored

      +

      Parameter Name

      +

      Algorithm code parameter specified by the output path

      +

      Local Path (Training Parameter Value)

      +

      Path for storing the output data in the ModelArts backend container

      +

      Hyperparameters

      +

      Hyperparameters used in a training job

      +

      Environment Variable

      +

      Environment variables for a training job

      +
      +
      +
    +
+
+
+ +
+ diff --git a/docs/modelarts/umn/develop-modelarts-0015.html b/docs/modelarts/umn/develop-modelarts-0015.html new file mode 100644 index 00000000..cbd53b7e --- /dev/null +++ b/docs/modelarts/umn/develop-modelarts-0015.html @@ -0,0 +1,45 @@ + + +

Viewing the Resource Usage of a Training Job

+

Operations

You can view the resource usage of a compute node in the Resource Usages window. The data of at most the last three days can be displayed. When the resource usage window is opened, the data is loading and refreshed periodically.

+

Operation 1: If a training job uses multiple compute nodes, choose a node from the drop-down list box to view its metrics.

+

Operation 2: Click cpuUsage, gpuMemUsage, gpuUtil, or memUsage to show or hide the usage chart of the parameter.

+

Operation 3: Hover the cursor on the graph to view the usage at the specific time.

+ +
+ + + + + + + + + + + + + + + + +
Table 1 Parameters

Parameter

+

Description

+

cpuUsage

+

CPU usage

+

gpuMemUsage

+

GPU memory usage

+

gpuUtil

+

GPU usage

+

memUsage

+

Memory usage

+
+
+
+
+
+ +
+ diff --git a/docs/modelarts/umn/develop-modelarts-0017.html b/docs/modelarts/umn/develop-modelarts-0017.html new file mode 100644 index 00000000..e04270c7 --- /dev/null +++ b/docs/modelarts/umn/develop-modelarts-0017.html @@ -0,0 +1,26 @@ + + +

Stopping, Rebuilding, or Searching for a Training Job

+

Save As Algorithm

To modify the algorithm of a training job, click Save As Algorithm in the upper right corner of the training job details page.

+

On the Algorithms page, the algorithm parameters for the last training job are automatically set. You can modify the settings.

+

This function is not supported for algorithms subscribed in AI Hub.

+
+
+

Stopping a Training Job

In the training job list, click Stop in the Operation column of a training job that is in creating, pending, or running state to stop the job.

+

+

A training job in completed, failed, terminated, or abnormal state cannot be stopped.

+
+

Rebuilding a Training Job

If you are not satisfied with a created training job, click Rebuild in the Operation column to rebuild it. The page for creating a training job is displayed. On this page, the parameter settings for the previous training job are automatically retained. You only need to modify certain parameter settings.

+
+

Searching for a Training Job

If you log in to ModelArts using an IAM account, all training jobs under this account are displayed in the training job list. To quickly search for a training job, use the following methods:

+

Method: Enable Display Only My Instances. Then, only jobs created under the current IAM account are displayed in the training job list.

+

Method: Search for a training job by job name.

+

Method: Search for jobs by name, ID, job type, status, creation time, algorithm, and resource pool.

+
+
+
+ +
+ diff --git a/docs/modelarts/umn/develop-modelarts-0018.html b/docs/modelarts/umn/develop-modelarts-0018.html new file mode 100644 index 00000000..2f950b70 --- /dev/null +++ b/docs/modelarts/umn/develop-modelarts-0018.html @@ -0,0 +1,13 @@ + + +

Releasing Training Job Resources

+
Release resources of a training job when not in use. +
+

After the resources are released, check the resource usage on the Dashboard page.

+
+
+ +
+ diff --git a/docs/modelarts/umn/develop-modelarts-0021.html b/docs/modelarts/umn/develop-modelarts-0021.html new file mode 100644 index 00000000..65cd0cc9 --- /dev/null +++ b/docs/modelarts/umn/develop-modelarts-0021.html @@ -0,0 +1,25 @@ + + + +

Advanced Training Operations

+ +

+
+ +
+ + + +
+ diff --git a/docs/modelarts/umn/develop-modelarts-0023.html b/docs/modelarts/umn/develop-modelarts-0023.html new file mode 100644 index 00000000..b4058bea --- /dev/null +++ b/docs/modelarts/umn/develop-modelarts-0023.html @@ -0,0 +1,73 @@ + + +

Resumable Training and Incremental Training

+

Overview

Resumable training indicates that an interrupted training job can be automatically resumed from the checkpoint where the previous training was interrupted. This method is applicable to model training that takes a long time.

+

Incremental training is a method in which input data is continuously used to extend the existing model's knowledge to further train the model.

+

Checkpoints are used to resume model training or incrementally train a model.

+

During model training, training results (including but not limited to epochs, model weights, optimizer status, and scheduler status) are continuously saved. In this way, an interrupted training job can be automatically resumed from the checkpoint where the previous training was interrupted.

+

To resume a training job, load a checkpoint and use the checkpoint information to initialize the training status. To do so, add reload ckpt to the code.

+
+

Resumable Training and Incremental Training in ModelArts

To resume model training or incrementally train a model in ModelArts, configure Training Output.

+

When creating a training job, configure the data path to the training output, save checkpoints in this data path, and set Predownload to Yes. If you set Predownload to Yes, the system automatically downloads the checkpoint file in the training output data path to a local directory of the training container before the training job is started.

+
Figure 1 Training Output
+

Enable fault tolerance check (auto restart) for resumable training. On the training job creation page, enable Auto Restart. If the environment pre-check fails, the hardware is not functional, or the training job fails, ModelArts will automatically issue the training job again.

+
Figure 2 Auto Restart
+
+

reload ckpt for MindSpore

import os
+import argparse
+parser.add_argument("--train_url", type=str)
+args = parser.parse_known_args()
+# train_url is set to /home/ma-user/modelarts/outputs/train_url_0.
+train_url = args.train_url
+
+# Initially defined network, loss function, and optimizer
+net = resnet50(args_opt.batch_size, args_opt.num_classes)
+ls = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
+opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.01, 0.9)
+# Initial epoch value for the first training. The initial value of epoch_size will be customized in MindSpore 1.3 and later versions.
+# cur_epoch_num = 0
+# Check whether there is a model file in the OBS output path. If there is no file, the model will be trained from the beginning by default. If there is a model file, the CKPT file with the maximum epoch value will be loaded as the pre-trained model.
+if os.listdir(train_url):
+    last_ckpt = sorted([file for file in os.listdir(train_url) if file.endswith(".ckpt")])[-1]
+    print('last_ckpt:', last_ckpt)
+    last_ckpt_file = os.path.join(train_url, last_ckpt)
+    # Load the checkpoint.
+    param_dict = load_checkpoint(last_ckpt_file)
+    print('> load last ckpt and continue training!!')
+    # Load model parameters to the network.
+    load_param_into_net(net, param_dict)
+    # Load model parameters to the optimizer.
+    load_param_into_net(opt, param_dict)
+
+    # Obtain the saved epoch value. The model will continue to be trained based on the epoch value. This function will be supported in MindSpore 1.3 and later versions.
+    # if param_dict.get("epoch_num"):
+    #     cur_epoch_num = int(param_dict["epoch_num"].data.asnumpy())
+model = Model(net, loss_fn=ls, optimizer=opt, metrics={'acc'})
+# as for train, users could use model.train
+if args_opt.do_train:
+    dataset = create_dataset()
+    batch_num = dataset.get_dataset_size()
+    config_ck = CheckpointConfig(save_checkpoint_steps=batch_num,
+                                     keep_checkpoint_max=35)
+    # For append_info=[{"epoch_num": cur_epoch_num}], append_info will be supported in MindSpore 1.3 and later versions to save the epoch value at the current time.
+    ckpoint_cb = ModelCheckpoint(prefix="train_resnet_cifar10",
+                                     directory=args_opt.train_url,
+                                     config=config_ck)
+    loss_cb = LossMonitor()
+    model.train(epoch_size, dataset, callbacks=[ckpoint_cb, loss_cb])
+    # For model.train(epoch_size-cur_epoch_num, dataset, callbacks=[ckpoint_cb, loss_cb]), the training resumed from the breakpoint will be supported in MindSpore 1.3 and later versions.
+
+
+
+ +
+ + + \ No newline at end of file diff --git a/docs/modelarts/umn/develop-modelarts-0077.html b/docs/modelarts/umn/develop-modelarts-0077.html index c9be6d96..94f63dcf 100644 --- a/docs/modelarts/umn/develop-modelarts-0077.html +++ b/docs/modelarts/umn/develop-modelarts-0077.html @@ -1,13 +1,52 @@ - + -

Using Custom Images

-

The preset images can be used in most training scenarios. In certain scenarios, ModelArts allows you to create custom images to train models. Custom images can be used to train models in ModelArts only after they are uploaded to the Software Repository for Container (SWR).

-

Customizing an image requires a deep understanding of containers. Use this method only if the subscribed algorithms and built-in frameworks cannot meet your requirements.

-

For details about how to use custom images supported by the new version of training, see Training a Model Using a Custom Image.

+

Using a Custom Image

+

The subscribed algorithms and preset images can be used in most training scenarios. In certain scenarios, ModelArts allows you to create custom images to train models.

+

Customizing an image requires a deep understanding of containers. Use this method only if the subscribed algorithms and preset images cannot meet your requirements. Custom images can be used to train models in ModelArts only after they are uploaded to the Software Repository for Container (SWR).

+

You can use custom images for training on ModelArts in either of the following ways:

+ + +

Using a Preset Image with Customization

The only difference between this method and creating a training job totally based on a preset image is that you must select an image. You can create a custom image based on a preset image.

+
Figure 1 Creating an algorithm using a preset image with customization
+

+

The process of this method is the same as that of creating a training job based on a preset image. For example:

+
  • The system automatically injects environment variables.
    • PATH=${MA_HOME}/anaconda/bin:${PATH}
    • LD_LIBRARY_PATH=${MA_HOME}/anaconda/lib:${LD_LIBRARY_PATH}
    • PYTHONPATH=${MA_JOB_DIR}:${PYTHONPATH}
    +
  • The selected boot file will be automatically started using Python commands. Ensure that the Python environment is correct. The PATH environment variable is automatically injected. Run the following commands to check the Python version for the training job:
    • export MA_HOME=/home/ma-user; docker run --rm {image} ${MA_HOME}/anaconda/bin/python -V
    • docker run --rm {image} $(which python) -V
    +
  • The system automatically adds hyperparameters associated with the preset image.
+
+

Using a Custom Image

Figure 2 Creating an algorithm using a custom image
+
+

For details about how to use custom images supported by the new-version training, see Using a Custom Image to Train Models.

+

If all used images are customized, do as follows to use a specified Conda environment to start training:

+

Training jobs do not run in a shell. Therefore, you are not allowed to run the conda activate command to activate a specified Conda environment. In this case, use other methods to start training.

+

For example, Conda in your custom image is installed in the /home/ma-user/anaconda3 directory, the Conda environment is python-3.7.10, and the training script is stored in /home/ma-user/modelarts/user-job-dir/code/train.py. Use a specified Conda environment to start training in one of the following ways:

+ +

If there is an error indicating that the .so file is unavailable in the $ANACONDA_DIR/envs/$DEFAULT_CONDA_ENV_NAME/lib directory, add the directory to LD_LIBRARY_PATH and place the following command before the preceding boot command:

+
export LD_LIBRARY_PATH=$ANACONDA_DIR/envs/$DEFAULT_CONDA_ENV_NAME/lib:$LD_LIBRARY_PATH;
+

For example, the example boot command used in method 1 is as follows:

+
export LD_LIBRARY_PATH=$ANACONDA_DIR/envs/$DEFAULT_CONDA_ENV_NAME/lib:$LD_LIBRARY_PATH; python /home/ma-user/modelarts/user-job-dir/code/train.py
+
+ + \ No newline at end of file diff --git a/docs/modelarts/umn/develop-modelarts-0079.html b/docs/modelarts/umn/develop-modelarts-0079.html index 864533df..53ac6fba 100644 --- a/docs/modelarts/umn/develop-modelarts-0079.html +++ b/docs/modelarts/umn/develop-modelarts-0079.html @@ -1,11 +1,11 @@ - +

Specifications for Custom Images Used for Training Jobs

-

When you use a locally developed model or training script to create a custom image, ensure that the custom image complies with the specifications defined by ModelArts.

-

Specifications

  • A custom image cannot be larger than 30 GB. It is best if the custom image is no larger than 15 GB. An oversized image affects the startup of a training job.
-
  • The uid of the default user of a custom image must be 1000.
  • GPU drivers cannot be installed in an custom image. When you use GPUs to run a training job, ModelArts automatically places the GPU driver in /usr/local/nvidia of the training environment.
  • ModelArts does not support the download of open source installation packages. Install the dependencies required by the training job in the custom image.
+

When you use a locally developed model or training script to create a custom image, ensure that the custom image complies with the specifications defined by ModelArts.

+

Specifications

  • A custom image cannot be larger than 30 GB. It is best if the custom image is no larger than 15 GB. An oversized image affects the startup of a training job.
+
  • The uid of the default user of a custom image must be 1000.
  • GPU drivers cannot be installed in an custom image. When you use GPUs to run a training job, ModelArts automatically places the GPU driver in /usr/local/nvidia of the training environment.
  • ModelArts does not support the download of open source installation packages. Install the dependencies required by the training job in the custom image.
-

Creating a Custom Image for Training Jobs

  1. Set up the Docker environment on an ECS or a local host.
  2. Write a Dockerfile based on your needs and the preceding specifications to build a custom image.
  3. Upload the created custom image to SWR.
+

Creating a Custom Image for Training Jobs

  1. Set up the Docker environment on an ECS or a local host.
  2. Write a Dockerfile based on your needs and the preceding specifications to build a custom image.
  3. Upload the created custom image to SWR.
diff --git a/docs/modelarts/umn/develop-modelarts-0081.html b/docs/modelarts/umn/develop-modelarts-0081.html deleted file mode 100644 index e8769e8e..00000000 --- a/docs/modelarts/umn/develop-modelarts-0081.html +++ /dev/null @@ -1,17 +0,0 @@ - - -

Training Job Event

-

Any key event of a training job will be recorded at the backend after the training job is displayed for you. You can check events on the training job details page.

-

This helps you better understand the running process of a training job and locate faults more accurately when a task exception occurs. You can check the following events:

-
  • During training job preparation, you can view the preparation actions or key events of the training job.
-
  • During training job runtime, you can view key information in each phase.
-

During the training process, key events can be manually or automatically refreshed.

-

Viewing Training Job Events

  1. In the left navigation pane of the ModelArts management console, choose Training Management > Training Jobs. In the training job list, click a job name.
  2. In the upper right corner of the training job details page, click View Event to view the event information.
-
-
-
- -
- diff --git a/docs/modelarts/umn/develop-modelarts-0082.html b/docs/modelarts/umn/develop-modelarts-0082.html new file mode 100644 index 00000000..55d32c78 --- /dev/null +++ b/docs/modelarts/umn/develop-modelarts-0082.html @@ -0,0 +1,16 @@ + + +

Permission to Set the Highest Job Priority

+

You can configure the priority when you create a training job using a new-version dedicated resource pool. You can change the priority of a pending job. The value ranges from 1 to 3. The default priority is 1, and the highest priority is 3. By default, the job priority can be set to 1 or 2. After the permission to set the highest job priority is configured, the priority can be set to 1 to 3.

+

Assigning the Permission to Set the Highest Job Priority to an IAM User

  1. Log in to the management console as a tenant user, hover the cursor over your username in the upper right corner, and choose Identity and Access Management from the drop-down list to switch to the IAM management console.
  2. On the IAM console, choose Permissions > Policies/Roles from the navigation pane, click Create Custom Policy in the upper right corner, and configure the following parameters.
    • Policy Name: Enter a custom policy name, for example, Allowing Users to Set the Highest Job Priority.
    • Policy View: Select Visual editor.
    • Policy Content: Select Allow, ModelArts Service, modelarts:trainJob:setHighPriority, and default resources.
    +
  3. In the navigation pane, choose User Groups. Then, click Authorize in the Operation column of the target user group. On the Authorize User Group page, select the custom policies created in 2, and click Next. Then, select the scope and click OK.

    After the configuration, all users in the user group have the permission to use Cloud Shell to log in to a running training container.

    +

    If no user group is available, create a user group, add users using the user group management function, and configure authorization. If the target user is not in a user group, you can add the user to a user group through the user group management function.

    +
+
+
+
+ +
+ diff --git a/docs/modelarts/umn/develop-modelarts-0092.html b/docs/modelarts/umn/develop-modelarts-0092.html new file mode 100644 index 00000000..ef0e360b --- /dev/null +++ b/docs/modelarts/umn/develop-modelarts-0092.html @@ -0,0 +1,16 @@ + + +

Viewing Training Job Events

+

Any key event of a training job will be recorded at the backend after the training job is displayed for you. You can check events on the training job details page.

+

This helps you better understand the running process of a training job and locate faults more accurately when a task exception occurs. The following job events are supported:

+
  • Training job created.
  • Training job failures:
  • Preparations timed out. The possible cause is that the cross-region algorithm synchronization or creating shared storage timed out.
  • The training job is queuing and awaiting resource allocation.
  • Failed to be queued.
  • The training job starts to run.
  • Training job executed.
  • Failed to run the training job.
  • The training job is preempted.
  • The system detects that your training job may be suspended. Go to the job details page to view the cause and handle the issue.
  • The training job has been restarted.
  • The training job has been manually stopped.
  • The training job has been stopped. (Maximum running duration: 1 hour)
  • The training job has been stopped. (Maximum running duration: 3 hours)
  • The training job has been manually deleted.
  • Billing information synchronized.
  • [worker-0] The training environment is being pre-checked.
  • [worker-0] [Duration: second] Pre-check completed.
  • [worker-0] [Duration: second] Pre-check failed. Error: xxx
  • [worker-0] [Duration: second] Pre-check failed. Error: xxx
  • [worker-0] The training code is being downloaded.
  • [worker-0] [Duration: second] Training code downloaded.
  • [worker-0] [Duration: second] Failed to download the training code. Failure cause:
  • [worker-0] The training input is being downloaded.
  • [worker-0] [Duration: second] Training input (parameter: xxx) downloaded.
  • [worker-0] [Duration: second] Failed to download the training input (parameter: xxx). Failure cause:
  • [worker-0] Python dependency packages are being installed. Import the following files:
  • [worker-0] [Duration: second] Python dependency packages installed. Import the following files:
  • [worker-0] The training job starts to run.
  • [worker-0] Training job executed.
  • [worker-0] The training input is being uploaded.
  • [worker-0] [Duration: second] Training output (parameter: xxx) uploaded.
+

During the training process, key events can be manually or automatically refreshed.

+

Procedure

  1. In the navigation pane of the ModelArts management console, choose Training Management > Training Jobs. In the training job list, click a job name.
  2. Click Events to view events.
+
+
+
+ +
+ diff --git a/docs/modelarts/umn/develop-modelarts-0097.html b/docs/modelarts/umn/develop-modelarts-0097.html new file mode 100644 index 00000000..35bd05eb --- /dev/null +++ b/docs/modelarts/umn/develop-modelarts-0097.html @@ -0,0 +1,27 @@ + + +

Viewing Training Job Logs

+

On the training job details page, you can preview logs, download logs, search for logs by keyword, and filter system logs in the log pane.

+
  • Previewing logs

    You can preview logs of each compute node, if multiple compute nodes are used, in the training log pane by choosing the target node from the drop-down list on the right.

    +

    If a log file is oversized, the system displays only the latest logs in the log pane. To view all logs, click the link in the upper part of the log pane, which will direct you to a new page.

    +
    Figure 1 Viewing all logs
    +

    +
    • If the total size of all logs exceeds 500 MB, the log page may be frozen. In this case, download the logs to view them locally.
    • A log preview link can be accessed by anyone within one hour after it is generated. You can share the link with others.

      Ensure that no privacy information is contained in the logs. Otherwise, information leakage may occur.

      +
    +
    +
  • Downloading logs

    Training logs are retained for only 30 days. To permanently store logs, click the download icon in the upper right corner of the log pane. You can download the logs of multiple compute nodes in a batch. You can also enable Persistent Log Saving and set a log path when you create a training job. In this way, the logs will be automatically stored in the specified OBS path.

    +

    If a training job is created on an Ascend compute node, certain system logs cannot be downloaded in the training log pane. To obtain these logs, go to the Job Log Path you set when you created the training job.

    +
    Figure 2 Downloading logs
    +
  • Searching for logs by keyword

    In the upper right corner of the log pane, enter a keyword in the search box to search for logs, as shown in Figure 3.

    +
    Figure 3 Searching for logs by keyword
    +

    The system will highlight the keyword and redirect you between search results. Only the logs loaded in the log pane can be searched for. If the logs are not fully displayed (see the message displayed on the page), obtain all the logs by downloading them or clicking the full log link and then search for the logs. On the page redirected by the full log link, press Ctrl+F to search for logs.

    +
  • Filtering system logs
    Figure 4 System logs
    +

    If System logs is selected, system logs and user logs are displayed. If System logs is deselected, only user logs are displayed.

    +
+
+
+ +
+ diff --git a/docs/modelarts/umn/develop-modelarts-0104.html b/docs/modelarts/umn/develop-modelarts-0104.html new file mode 100644 index 00000000..3a3ed181 --- /dev/null +++ b/docs/modelarts/umn/develop-modelarts-0104.html @@ -0,0 +1,310 @@ + + +

Viewing Environment Variables of a Training Container

+

What Is an Environment Variable

This section describes environment variables preset in a training container. The environment variables include:

+
  • Path environment variables
  • Environment variables of a distributed training job
  • Nvidia Collective multi-GPU Communication Library (NCCL) environment variables
  • OBS environment variables
  • Environment variables of the pip source
  • Environment variables of the API Gateway address
  • Environment variables of job metadata
+
+

Configuring Environment Variables

When you create a training job, you can add environment variables or modify environment variables preset in the training container.

+
Figure 1 Setting environment variables
+
+

Environment Variables Preset in a Training Container

The following tables list environment variables preset in a training container.

+

The environment variable values are examples.

+
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Table 1 Path environment variables

Variable

+

Description

+

Example

+

PATH

+

Executable file paths

+

PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

+

LD_LIBRARY_PATH

+

Dynamic load library paths

+

LD_LIBRARY_PATH=/usr/local/seccomponent/lib:/usr/local/cuda/lib64:/usr/local/cuda/compat:/root/miniconda3/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64

+

LIBRARY_PATH

+

Static library paths

+

LIBRARY_PATH=/usr/local/cuda/lib64/stubs

+

MA_HOME

+

Main directory of a training job

+

MA_HOME=/home/ma-user

+

MA_JOB_DIR

+

Parent directory of the training algorithm folder

+

MA_JOB_DIR=/home/ma-user/modelarts/user-job-dir

+

MA_MOUNT_PATH

+

Path mounted to a ModelArts training container, which is used to temporarily store training algorithms, algorithm input, algorithm output, and logs

+

MA_MOUNT_PATH=/home/ma-user/modelarts

+

MA_LOG_DIR

+

Training log directory

+

MA_LOG_DIR=/home/ma-user/modelarts/log

+

MA_SCRIPT_INTERPRETER

+

Training script interpreter

+

MA_SCRIPT_INTERPRETER=

+

WORKSPACE

+

Training algorithm directory

+

WORKSPACE=/home/ma-user/modelarts/user-job-dir/code

+
+
+ +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Table 2 Environment variables of a distributed training job

Variable

+

Description

+

Example

+

MA_CURRENT_IP

+

IP address of the physical node on which a job container is running.

+

MA_CURRENT_IP=192.168.23.38

+

MA_NUM_GPUS

+

Number of GPUs used by a job container.

+

MA_NUM_GPUS=8

+

MA_TASK_NAME

+

Name of a job container, for example:

+
  • worker in MindSpore and PyTorch.
  • learner or worker in reinforcement learning engines.
  • ps or worker in TensorFlow.
+

MA_TASK_NAME=worker

+

MA_NUM_HOSTS

+

Compute nodes required for a training job.

+

MA_NUM_HOSTS=4

+

VC_TASK_INDEX

+

Sequence number of a job container for multi-node training. The value of the first container is 0.

+

VC_TASK_INDEX=0

+

VC_WORKER_NUM

+

Compute nodes required for a training job.

+

VC_WORKER_NUM=4

+

VC_WORKER_HOSTS

+

Domain name of each node for multi-node training. Use commas (,) to separate the domain names in sequence. You can obtain the IP address through domain name resolution.

+

VC_WORKER_HOSTS=modelarts-job-a0978141-1712-4f9b-8a83-000000000000-worker-0.modelarts-job-a0978141-1712-4f9b-8a83-000000000000,modelarts-job-a0978141-1712-4f9b-8a83-000000000000-worker-1.ob-a0978141-1712-4f9b-8a83-000000000000,modelarts-job-a0978141-1712-4f9b-8a83-000000000000-worker-2.modelarts-job-a0978141-1712-4f9b-8a83-000000000000,ob-a0978141-1712-4f9b-8a83-000000000000-worker-3.modelarts-job-a0978141-1712-4f9b-8a83-000000000000

+
+
+ +
+ + + + + + + + + + + + + + + + + + + + + +
Table 3 NCCL environment variables

Variable

+

Description

+

Example

+

NCCL_VERSION

+

NCCL version

+

NCCL_VERSION=2.7.8

+

NCCL_DEBUG

+

NCCL log level

+

NCCL_DEBUG=INFO

+

NCCL_IB_HCA

+

InfiniBand NIC to use for communication

+

NCCL_IB_HCA=^mlx5_bond_0

+

NCCL_SOCKET_IFNAME

+

IP interface to use for communication

+

NCCL_SOCKET_IFNAME=bond0,eth0

+
+
+ +
+ + + + + + + + + + + + + + + + + +
Table 4 OBS environment variables

Variable

+

Description

+

Example

+

S3_ENDPOINT

+

OBS endpoint

+

S3_ENDPOINT=https://obs.region.xxx.com

+

S3_VERIFY_SSL

+

Whether to use SSL to access OBS

+

S3_VERIFY_SSL=0

+

S3_USE_HTTPS

+

Whether to use HTTPS to access OBS

+

S3_USE_HTTPS=1

+
+
+ +
+ + + + + + + + + + + + + + + + + +
Table 5 Environment variables of the pip source and API Gateway address

Variable

+

Description

+

Example

+

MA_PIP_HOST

+

Domain name of the pip source

+

MA_PIP_HOST=repo.xxx.com

+

MA_PIP_URL

+

Address of the pip source

+

MA_PIP_URL=http://repo.xxx.com/repository/pypi/simple/

+

MA_APIGW_ENDPOINT

+

ModelArts API Gateway address

+

MA_APIGW_ENDPOINT=https://modelarts.region.xxx.xxx.com

+
+
+ +
+ + + + + + + + + +
Table 6 Environment variables of job metadata

Variable

+

Description

+

Example

+

MA_CURRENT_INSTANCE_NAME

+

Name of the current node for multi-node training

+

MA_CURRENT_INSTANCE_NAME=modelarts-job-a0978141-1712-4f9b-8a83-000000000000-worker-1

+
+
+ +
+ + + + + + + + + +
Table 7 Precheck environment variables

Variable

+

Description

+

Example

+

MA_DETECT_TRAIN_INJECT_CODE

+

Whether to enable ModelArts precheck.

+

The default value is 1, indicating that precheck is enabled.

+

The value 0 indicates that the precheck is disabled.

+

Enable precheck to detect node and driver faults before they affect services.

+

1

+
+
+
+
+ +
+ + + \ No newline at end of file diff --git a/docs/modelarts/umn/develop-modelarts-0106.html b/docs/modelarts/umn/develop-modelarts-0106.html new file mode 100644 index 00000000..72d86299 --- /dev/null +++ b/docs/modelarts/umn/develop-modelarts-0106.html @@ -0,0 +1,21 @@ + + +

Logging In to a Training Container Using Cloud Shell

+

Application Scenario

You can use Cloud Shell provided by the ModelArts console to log in to a running training container.

+
+

Constraints

You can use Cloud Shell to log in to a running training container using a dedicated resource pool.

+
+

Preparation: Assigning the Cloud Shell Permission to an IAM User

  1. Log in to the management console as a tenant user, hover the cursor over your username in the upper right corner, and choose Identity and Access Management from the drop-down list to switch to the IAM management console.
  2. On the IAM console, choose Permissions > Policies/Roles from the navigation pane, click Create Custom Policy in the upper right corner, and configure the following parameters.
    • Policy Name: Enter a custom policy name, for example, Using Cloud Shell to log in to a running training container.
    • Policy View: Select Visual editor.
    • Policy Content: Select Allow, ModelArts Service, modelarts:trainJob:exec, and default resources.
    +
  3. In the navigation pane, choose User Groups. Then, click Authorize in the Operation column of the target user group. On the Authorize User Group page, select the custom policies created in 2, and click Next. Then, select the scope and click OK.

    After the configuration, all users in the user group have the permission to use Cloud Shell to log in to a running training container.

    +

    If no user group is available, create a user group, add users using the user group management function, and configure authorization. If the target user is not in a user group, you can add the user to a user group through the user group management function.

    +
+
+

Using Cloud Shell

  1. Configure parameters based on Preparation: Assigning the Cloud Shell Permission to an IAM User.
  2. On the ModelArts console, choose Training Management > Training Jobs. Go to the details page of the target training job and log in to the training container on the Cloud Shell tab.
+
+
+
+ +
+ diff --git a/docs/modelarts/umn/devtool-modelarts_0211.html b/docs/modelarts/umn/devtool-modelarts_0211.html index be71dadf..d1864e4d 100644 --- a/docs/modelarts/umn/devtool-modelarts_0211.html +++ b/docs/modelarts/umn/devtool-modelarts_0211.html @@ -1,9 +1,9 @@ - +

JupyterLab Plug-ins

-

+

diff --git a/docs/modelarts/umn/devtool-modelarts_0212.html b/docs/modelarts/umn/devtool-modelarts_0212.html index 2ec5fd8b..2f529dbd 100644 --- a/docs/modelarts/umn/devtool-modelarts_0212.html +++ b/docs/modelarts/umn/devtool-modelarts_0212.html @@ -1,24 +1,24 @@ - +

Code Parametrization Plug-in

-

Use Guide

  • The Add Form and Edit Form buttons are available only to the shortcut menu of code cells.
    Figure 1 Viewing a code cell
    +

    Use Guide

    • The Add Form and Edit Form buttons are available only to the shortcut menu of code cells.
      Figure 1 Viewing a code cell
    -
    • After opening new code, add a form before editing it.
      Figure 2 Shortcut menu of code cells
      +
      • After opening new code, add a form before editing it.
        Figure 2 Shortcut menu of code cells
    -

    -

    Add Form

    If you click Add Form, a code cell will be split into the code and form edit area. Click Edit on the right of the form to change the default title.

    -
    Figure 3 Two edit areas
    +

    +

    Add Form

    If you click Add Form, a code cell will be split into the code and form edit area. Click Edit on the right of the form to change the default title.

    +
    Figure 3 Two edit areas
    -

    Edit Form

    If you click Edit Form, four sub-options will be displayed: Add new form field, Hide code, Hide form, and Show All.

    +

    Edit Form

    If you click Edit Form, four sub-options will be displayed: Add new form field, Hide code, Hide form, and Show All.

    -
    • You can set the form field type to dropdown, input, and slider. See Figure 4. Each time a field is added, the corresponding variable is added to the code and form areas. If a value in the form area is changed, the corresponding variable in the code area is also changed.

      When creating a dropdown form, click ADD Item and add at least two items. See Figure 5.

      +
      • You can set the form field type to dropdown, input, and slider. See Figure 4. Each time a field is added, the corresponding variable is added to the code and form areas. If a value in the form area is changed, the corresponding variable in the code area is also changed.

        When creating a dropdown form, click ADD Item and add at least two items. See Figure 5.

        -
        Figure 4 Form style of dropdown, input, and slider
        -
        Figure 5 Creating a dropdown form
        -
        Figure 6 Deleting a form
        -
        • If the form field type is set to dropdown, the supported variable types are raw and string.
        • If the form field type is set to input, the supported variable types are boolean, date, integer, number, raw, and string.
        • If the form field type is set to slider, the minimum value, maximum value, and step can be set.
        -
      • If you click Hide code, the code area will be hidden.
      • If you click Hide form, the form area will be hidden.
      • If you click Show All, both the code and form areas will be displayed.
      +
      Figure 4 Form style of dropdown, input, and slider
      +
      Figure 5 Creating a dropdown form
      +
      Figure 6 Deleting a form
      +
      • If the form field type is set to dropdown, the supported variable types are raw and string.
      • If the form field type is set to input, the supported variable types are boolean, date, integer, number, raw, and string.
      • If the form field type is set to slider, the minimum value, maximum value, and step can be set.
      +
    • If you click Hide code, the code area will be hidden.
    • If you click Hide form, the form area will be hidden.
    • If you click Show All, both the code and form areas will be displayed.
    + + \ No newline at end of file diff --git a/docs/modelarts/umn/docker-modelarts_0016.html b/docs/modelarts/umn/docker-modelarts_0016.html index df8c81d0..9a61a5f2 100644 --- a/docs/modelarts/umn/docker-modelarts_0016.html +++ b/docs/modelarts/umn/docker-modelarts_0016.html @@ -1,7 +1,7 @@ - +

    FAQ

    -
    +
    diff --git a/docs/modelarts/umn/docker-modelarts_0017.html b/docs/modelarts/umn/docker-modelarts_0017.html index 490f3a97..c0a9bbb8 100644 --- a/docs/modelarts/umn/docker-modelarts_0017.html +++ b/docs/modelarts/umn/docker-modelarts_0017.html @@ -1,7 +1,7 @@ - +

    Using a Custom Image to Train Models (New-Version Training)

    -
    +
    diff --git a/docs/modelarts/umn/docker-modelarts_0018.html b/docs/modelarts/umn/docker-modelarts_0018.html index 2f7fb913..625307d3 100644 --- a/docs/modelarts/umn/docker-modelarts_0018.html +++ b/docs/modelarts/umn/docker-modelarts_0018.html @@ -1,16 +1,16 @@ - +

    How Can I Upload Images to SWR?

    -

    This section describes how to upload images to SWR.

    -

    Step 1 Logging In to SWR

    1. Log in to the SWR console.
    2. Click Create Organization in the upper right corner and enter an organization name to create an organization. deep-learning is used as an example. The organization name deep-learning used in subsequent commands must be replaced with the actual organization name.
    3. Click Generate Login Command in the upper right corner to obtain a login command.
      Figure 1 Login Command
      -
    4. Log in to the ECS environment as the root user and enter the login command.
      Figure 2 Login command executed on the ECS
      +

      This section describes how to upload images to SWR.

      +

      Step 1 Logging In to SWR

      1. Log in to the SWR console.
      2. Click Create Organization in the upper right corner and enter an organization name to create an organization. You can customize an organization name. In this case, deep-learning is used as an example. The organization name deep-learning used in subsequent commands must be replaced with the actual organization name.
      3. Click Generate Login Command in the upper right corner to obtain a login command.
        Figure 1 Login Command
        +
      4. Log in to the ECS environment as the root user and enter the login command.
        Figure 2 Login command executed on the ECS
      -

      Step 2 Uploading Images to SWR

      This section describes how to upload an image to SWR.
      1. Log in to SWR and tag the image to be uploaded. Replace the organization name deep-learning in subsequent commands with the actual organization name configured in step 1.
        sudo docker tag tf-1.13.2:latest swr.xxx.com/deep-learning/tf-1.13.2:latest
        -
      2. Run the following command to upload the image:
        sudo docker push swr.xxx.com/deep-learning/tf-1.13.2:latest
        -
        Figure 3 Uploading an image
        +

        Step 2 Uploading Images to SWR

        This section describes how to upload an image to SWR.
        1. Log in to SWR and tag the image to be uploaded. Replace the organization name deep-learning in subsequent commands with the actual organization name configured in step 1.
          sudo docker tag tf-1.13.2:latest swr.xxx.com/deep-learning/tf-1.13.2:latest
          +
        2. Run the following command to upload the image:
          sudo docker push swr.xxx.com/deep-learning/tf-1.13.2:latest
          +
          Figure 3 Uploading an image
          -
        3. After the image is uploaded, choose My Images on the left navigation pane of the SWR console to view the uploaded custom images.

          swr.xxx.com/deep-learning/tf-1.13.2:latest is the SWR URL of the custom image.

          +
        4. After the image is uploaded, choose My Images on the left navigation pane of the SWR console to view the uploaded custom images.

          swr.xxx.com/deep-learning/tf-1.13.2:latest is the SWR URL of the custom image.

        @@ -21,3 +21,10 @@
      + + \ No newline at end of file diff --git a/docs/modelarts/umn/docker-modelarts_0019.html b/docs/modelarts/umn/docker-modelarts_0019.html index f72985d0..61941696 100644 --- a/docs/modelarts/umn/docker-modelarts_0019.html +++ b/docs/modelarts/umn/docker-modelarts_0019.html @@ -1,7 +1,7 @@ - +

      How Do I Configure Environment Variables for an Image?

      -

      In a Dockerfile, use the ENV instruction to configure environment variables. For details, see Dockerfile reference.

      +

      In a Dockerfile, use the ENV instruction to configure environment variables. For details, see Dockerfile reference.